Algorithme pour le mouvement par courbure cristalline
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Outline

Implicit discretization of mean curvature flow: an elementary approach

Extensions, anisotropies, crystalline case

>
>
> Discrete lattices and discrete scheme
» Consistency as €,h — 0

>

Numerics



Implicit MCF for boundaries [Luckhaus-Sturzenhecker 1995], [Almgren-Taylor-Wang 1993]

E° given, h > 0 time-step, for each n E"! is found by:

min Per(E) + E / dist(x, 0E™)dx
E h ENEN

so that on 9E"*1:
+dist(x,0E") = hkgent1(x).

(Almost) equivalent formulation (cf. [C, 2004])
1
min/]Du\ + 2h/(u —dpn)?dx — E™l={u<0}

where dg» = dist(x, E") — dist(x, "E") is the signed distance to JE". Based on this
formulation, (very) simple proof of consistency in [C-Novaga, 2007].
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Implicit MCF for boundaries

Almost equivalent formulation: solve

—hdivz"t 4 " = dgs

inRY  — EMl = (4"t <0}
’Zn+1‘ <1, 1. pyntl = ’Dun+1‘

which is the Euler-Lagrange eq. for the previous problem (but makes sense also for
unbounded JE").

Then (easy by comparison), dg» 1-Lipschitz = u"*! 1-Lipschitz (and z - Du = |Du|
reads z = Vu/|Vu| a.e. where Vu # 0, or equivalently z € 9| - |(Vu) a.e.)

— follows another very simple scheme of proof of consistency:



Implicit MCF for boundaries

denii(x) > u"(x)  where u™1 >0

denii(x) < u"(x)  where u™?t < 0

Since u™*1 is 1-Lipschitz, one has , so that:

un+1 _ dEn
h

= divz"*1
implies:
— > divz™?!  where dgnii > 0

EE < divz" where dins < 0.



Implicit MCF for boundaries

so if Ex(t) = E/R z,(t) = zIt/h) ([-] =integer part), and dg,(v)(x) = d(x, 1),
zp — z(x,t) as h — 0, one has trivially:

% > divz where d > 0, % < divz where d < 0.
ot ot

at least in the distributional sense. Together with z € J| - |(Vd) (i.e., = Vd here), this
® od od

— > Ad where d >0, — < Ad whered <0
ot ot

which characterizes the fact that d(x, t) = dist(x, E(t)) — dist(x, °E(t)) where E(t)
evolves by its mean curvature (cf in particular [Soner, 1993]).



Implicit MCF for boundaries

Non obvious points:

> d,

compactness?

is 1-Lipschitz in space but what regularity in time to get some (useful)

> z, =z, 2z, €9|-|(Vup), up — d... but how can we be sure that in the limit
zed|-|(Vd)?

Needs a bit of control of dg, and div z.



Control of dj, in time / of div z,

This control is obtained by understanding how a basic shape evolves, and using
comparison. Isotropic case: we estimate the (time-discrete) evolution of a ball. For
B(0, R), de(x) = |x| — R and one has the explicit solution:

—hdivz+u=|x| - R x| — R+hN=L |x| > Cvh
— u(x) = Ix]
|z| <1,z Du = |Dul C'vVh x| < CVh

so that if E' = {u <0}, der = |x| = R+ Ch/R.

This allows to control, by comparison, both the variation of dj, and div z:
» if dp(t,x) > R >0, then for s > t, dx(s,x) > R — %(s — t) for a short time,

» but also, we deduce div z, < % where d;, > R.

[We use divz™?! = (u""! — dg.)/h and a control from above for u™*1 ]



Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

» forcing term V, = —k + g(x, t),
» (convex) mobility V,, = —(veg)(k + g),
> anisotropic surface tension V,, = —¢(ve)(kg + g) where kg = div Vo(ve),

» crystalline surface tension, case {¢ < 1} polytope (or simply nonsmooth, non
elliptic) (see also [Giga-Giga 2001], [Giga-Pozar 2018]).



Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

e Mobility: replace Euclidean distance with ¢°-distance:
d?o(x) = minyeg P°(x — y) — minyge °(y — x), where ¢°(x) = supy(,)<1 v - x is the
polar [ distance is now measured along the vector field V1)(v)*];
e Surface tension: replace [ |Dul| replaced with [ ¢(—Du)?, Per(E) with [, ¢(v), and
the equation with:

—hdivz+u=deg, ze€dp(Vu)ae.,

— then do exactly the same.

YIn case ¥ = ¢ this is called the “Cahn-Hoffmann” vector field.
2in the sequel we assume ¢ is even.



Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

In particular, in the simpler case 1) = ¢ (which we consider from now on), the explicit
solution for the ball is replaced with the explicit solution for the “Wulff shape”
{¢° < R} (which is the shape which is autosimilar for the motion):

—hdivz+u=¢°(x) - R ¢°(x) = R+ hh ¢°(x) > CvVh
— u(x) = #° ()
z € 9¢(Vu) C'Vh ¢°(x) < CVh

and the proof then goes on as in the standard case (+ notions of distributional

super/subflows with a comparison result).

Comparison / (generic) uniqueness is proved in [CMP 2017, CMNP 2019].



Fully discrete case?

In addition to h > 0 we consider £ > 0 a space discretization step. We consider a
lattice (¢Z" to make things simple), viewed as a graph with edges eZ" x ¢Z", and a

discrete total variation

TV(u) =M1 Y 5,-,J-yu,-—uj\i>/¢(0u) a0

ijeezZN

where 3;; = B3; ;i = a(j_j)/= (non-oriented, translation invariant) and
é(p) =Y aulp- k|-
k

We assume ay > 0, o = 0 but for a finite set of indices.



Fully discrete case

We introduce the discrete gradient D, : eZN — ¢ZN x ¢ZN and divergence D}

uj — uj zii— zij
(Du)ij=—~—  (Diz)j=) F—
g ; g

(the sum is on j's such that g ; > 0).



Discrete LS/ATW: what anisotropies?

Remark What anisotropies are reached by this construction?

o(p) = Zk:akp k| = Zk:ter?f'ffu tayk - p = max {z pizEY -k, k]}

k

is the support function of the set
Wi ={¢° <1} => ax[-k K
k

which can only be of this form: a Minkovski sum of segments. That is, a “zonotope”.
In 2D, any symmetric polyhedron is a zonotope. In higher dimension it is more
restrictive since also all facets of a zonotope are zonotopes...



Discrete LS/ATW

Minimization problem

eN

min TV (u) + T (uj —di)

icezZN

Euler-Lagrange (or KKT), using TV.(u) = " sup{(z, D-t) v opn : |2ij] < Bij}:

h(D:z); + u; = dF for all i € eZN |

‘Z;J| SB;J, Z,’J( ) B,J\u,— | where ﬁ;’j>0.

Then iterate and send ¢, h — 0.

~» same proof?



Discrete LS/ATW [Braides, Gelli, Novaga 2010]

In [Braides, Gelli, Novaga, 2010], this is studied for ¢(p) = |p1| + |p2|, in dimension
N =2 (a(0,0),0,1) = @(0,0),(1,0) = 1)- The scheme is implemented in the standard way,
with E"*1 = {i: u; <0} and d"*! the signed ¢(*°-distance to E™*1. In particular, at
each step, a rounding at scale ¢ is applied.
They send then &, h — 0 and observe:

» if ¢ < h, then as in the continuous setting, convergence to a (crystalline) mean

curvature flow;
» if £ > h, then the motion is blocked, all interfaces are pinned;
» if ¢ ~ h, then convergence to the curvature flow with a drift (and pinning of the

interfaces of low curvature).

To get rid of the rounding effect, we need to forget about E and work only with u,d.



Discrete LS/ATW

If we want to reproduce the consistency proof as in the continuous setting, we need:
> a “redistancing” map u™! s d"t! = d[u"!] with d"1 > u"t1 where "t > 0
and d"t1 < "1 where ™! < 0:
» a control/estimate of the evolution starting from a Wulff shape
{i € eZN : ¢°(i) < R}, or more precisely of the process
? Ch

TV:—minim. redistancin
ey ToNE d[u] SO - R+ —;
0)

d=¢°—R

> Extra: a “localized” (vectorial) (z"); built from (2ij)(i jycezN xezn, Since we want to
consider its limit (and we need —D}z" — divz if 2" — 2).



Consistent redistancing

We define a (brute force) redistancing operation as follows: given u 1-Lipschitz
(uj — u; < ¢°(i — j)Vi,j € eZN), we let:

dt[u]; == infj.u<o0 U + o°(—1),
Sd+[u]i = SUPj:ujzo d+[u]J - ¢OU - I)

and similarly sd~[u] = —sd[—u]. (We also introduce various heuristically more precise
interpolations, but sd* is the largest and sd~ the smallest). By construction, we

immediately get that sd™ are 1-Lipschitz (for ¢°), and above u where u is positive,
below where u is negative.



The fully discrete scheme with consistent redistancing

Given d° 1-Lipschitz an initial “distance function”, we define iteratively d”, n > 1 by:

h(Drz™1) 4 ultt = dP for all i € eZN |
1 1 1 1 1 1
< B 20— ) = gl = ] where g > 0.
Then one shows as in the continuous case that u"*! is 1-Lipschitz (using comparison +
invariance by integer translations), and we let d"1 = sd*+[u"*1].
Then as before, z, = zlt/M, d), = dlt/"] etc. We get for free:

dn(t + h) — dp(t)

b > —DZzj, in eZN where dy(t + h) is positive, etc.

We still need: to control how dj, varies in time (control of the Wulff shape); to define a
limiting z (with —D*z, — div z).



Control of the Wulff shape

We need an estimate on u which solves:

h(D:z) + uj = ¢°(i) — R for all i € eZN |
|zijl < Bijs  zij(uj — ui) = Bijlui — uj]  where 3 > 0.

Lemma sd*[u]; < ¢°(i) — R+ hC/¢°(i) + C'e for some C >0, C' > 0 and if
#°(i) > Cmax{e,Vh}. If the weights (c ), are rational, then C' = 0.

[Remark: the C'e comes from the redistancing, u; is bounded by the first terms.]

Hence: if £ ~ h we get a control as in the continuous setting
(dn(s) > dp(t) — (C/R)(s—t) if s > t and dp(t) > R > 0). If the weights are rational,
we get this control regardless the ratio /h.



Sending e, h — 0

Theorem If e — 0, h — 0, and & < h, then dh — d which is the signed distance
function of sets E(t) evolving with the crystalline mean curvature flow:

Vi, € ¢°(VE)kg(x).

If the v are rational, then this holds however ¢, h — 0.

The proof is as in the continuous case, except one first needs to introduce

@)=2 3 OG- i)ew

jcezN

which is then shown to converge to a vector field z(x, t) with z € 9¢(Vd).



Examples

» We solve the total variation on a graph using Y. Boykov and V. Kolmogorov's
(2004) maxflow/mincut algorithm, together with D. Hochbaum's algorithm
(2001/2013) for total variation + quadratic penalization (also [C.-Darbon,
2009/12));

» The redistancing is slow (inf-convolution formula);

» For speedup, both operations are only done in a strip around the interface. Yet the
redistancing becomes very inexact if the strip is too narrow, especially for
complicated interaction patterns.
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Figure: Wulff shapes of initial radius Ry = 50 evolved at times t = 0, 200, 400, ...,1200 for
four different anisotropies (square, octagon, diamond and “almost isotropic”).



Examples
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Figure: Evolution of the radius for the square, octogonal, diamond and “almost isotropic”

anisotropies.



Examples
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Figure: Evolution of an initial octagon with Ry = 10 at times 0,7,14,.... Left: e =1, h=10.1,
middle: e = 0.1, h = 0.1, right: £ =0.1, h=0.5.



Examples
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Figure: Evolution of the radius for an
t =50. Left: e =1, h=0.1, middle: ¢ = 0.1, h=0.1, right: ¢

initial octagon with Ry = 10 until the vanishing time

=0.1, h=0.5.



Perspectives/extensions

» [sotropic case(!) discretized using a (2N + 1)-points approximation of the
Laplacian and the Euclidean distance;

N S A
wl oL M o
8 _ 4 P Y
ol @ @ )] o]

M| \\,‘
20 | -
, I ,
0 100 150 20,

L L L
Er 0 250 50 100 150 200 250

Figure: Left, t = 0,20,...,200, right, t = 0,25,50,...,250 then t = 375,500, ..., 1250.

» Nonlinear case (with a nonlinear profile tanh(dg)): partial justification of “learned”
algorithms (Bretin, Denis, Masnou, Terii 2022).



Thank you for your attention



