Algorithme pour le mouvement par courbure cristalline

Antonin Chambolle

CEREMADE, CNRS, Univ. Paris-Dauphine / PSL, and Mokaplan, INRIA Paris

avec D. DeGennaro (CEREMADE/Parme) et M. Morini (Parme)

SMAI 2025, Carcans, 3 juin 2025.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Outline

Implicit discretization of mean curvature flow: an elementary approach

- Extensions, anisotropies, crystalline case
- Discrete lattices and discrete scheme
- Consistency as $\varepsilon, h \to 0$
- Numerics

Implicit MCF for boundaries [Luckhaus-Sturzenhecker 1995], [Almgren-Taylor-Wang 1993]

 E^0 given, h > 0 time-step, for each $n E^{n+1}$ is found by:

$$\min_{E} \operatorname{Per}(E) + \frac{1}{h} \int_{E \bigtriangleup E^{n}} \operatorname{dist}(x, \partial E^{n}) dx$$

so that on ∂E^{n+1} :

 $\pm \operatorname{dist}(x, \partial E^n) = h \kappa_{\partial E^{n+1}}(x).$

(Almost) equivalent formulation (cf. [C, 2004])

$$\min_{u} \int |Du| + \frac{1}{2h} \int (u - d_{E^n})^2 dx \quad \longrightarrow \quad E^{n+1} = \{u \le 0\}$$

where $d_{E^n} = \text{dist}(x, E^n) - \text{dist}(x, {}^{\complement}E^n)$ is the signed distance to ∂E^n . Based on this formulation, (very) simple proof of consistency in [C-Novaga, 2007].

Implicit MCF for boundaries [Luckhaus-Sturzenhecker 1995], [Almgren-Taylor-Wang 1993]

 E^0 given, h > 0 time-step, for each $n E^{n+1}$ is found by:

$$\min_{E} \operatorname{Per}(E) + \frac{1}{h} \int_{E \bigtriangleup E^{n}} \operatorname{dist}(x, \partial E^{n}) dx \leftrightarrow \min_{E} \mathcal{E}(E) + \frac{1}{2h} \operatorname{dist}(E, E^{n})^{2}$$

so that on ∂E^{n+1} :

 $\pm \operatorname{dist}(x, \partial E^n) = h \kappa_{\partial E^{n+1}}(x).$

(Almost) equivalent formulation (cf. [C, 2004])

$$\min_{u} \int |Du| + \frac{1}{2h} \int (u - d_{E^n})^2 dx \quad \longrightarrow \quad E^{n+1} = \{u \le 0\}$$

where $d_{E^n} = \text{dist}(x, E^n) - \text{dist}(x, {}^{\complement}E^n)$ is the signed distance to ∂E^n . Based on this formulation, (very) simple proof of consistency in [C-Novaga, 2007].

Implicit MCF for boundaries

Almost equivalent formulation: solve

$$\begin{cases} -h \operatorname{div} z^{n+1} + u^{n+1} = d_{E^n} \\ |z^{n+1}| \le 1, \quad z^{n+1} \cdot Du^{n+1} = |Du^{n+1}| \end{cases} \quad \text{in } \mathbb{R}^N \longrightarrow E^{n+1} = \{u^{n+1} \le 0\}$$

which is the Euler-Lagrange eq. for the previous problem (but makes sense also for unbounded ∂E^n).

Then (easy by comparison), d_{E^n} 1-Lipschitz $\Rightarrow u^{n+1}$ 1-Lipschitz (and $z \cdot Du = |Du|$ reads $z = \nabla u / |\nabla u|$ a.e. where $\nabla u \neq 0$, or equivalently $z \in \partial |\cdot| (\nabla u)$ a.e.)

 \longrightarrow follows another very simple scheme of proof of consistency:

Implicit MCF for boundaries

Since u^{n+1} is 1-Lipschitz, one has $\begin{cases} 0 \\ 0 \\ 0 \end{cases}$

$$d_{E^{n+1}}(x) \ge u^{n+1}(x)$$
 where $u^{n+1} > 0$,
 $d_{E^{n+1}}(x) \le u^{n+1}(x)$ where $u^{n+1} < 0$, so that:

$$\frac{u^{n+1}-d_{E^n}}{h} = \operatorname{div} z^{n+1}$$

implies:

$$\begin{cases} \frac{d_{E^{n+1}}-d_{E^n}}{h} \geq \operatorname{div} z^{n+1} & \text{where } d_{E^{n+1}} > 0\\ \frac{d_{E^{n+1}}-d_{E^n}}{h} \leq \operatorname{div} z^{n+1} & \text{where } d_{E^{n+1}} < 0. \end{cases}$$

Implicit MCF for boundaries

so if $E_h(t) = E^{[t/h]}$, $z_h(t) = z^{[t/h]}$ ([·] =integer part), and $d_{E_h(t)}(x) \to d(x, t)$, $z_h \to z(x, t)$ as $h \to 0$, one has trivially:

$$rac{\partial d}{\partial t} \geq \operatorname{div} z$$
 where $d > 0, \quad rac{\partial d}{\partial t} \leq \operatorname{div} z$ where $d < 0.$

at least in the distributional sense. Together with $z \in \partial |\cdot| (\nabla d)$ (i.e., $= \nabla d$ here), this is ∂d

$$\frac{\partial a}{\partial t} \ge \Delta d$$
 where $d > 0$, $\frac{\partial a}{\partial t} \le \Delta d$ where $d < 0$

which characterizes the fact that $d(x, t) = dist(x, E(t)) - dist(x, {}^{\complement}E(t))$ where E(t) evolves by its mean curvature (*cf* in particular [Soner, 1993]).

Non obvious points:

- d_{E_h} is 1-Lipschitz in space but what regularity in time to get some (useful) compactness?
- ► $z_h \stackrel{*}{\rightharpoonup} z, z_h \in \partial | \cdot | (\nabla u_h), u_h \to d...$ but how can we be sure that in the limit $z \in \partial | \cdot | (\nabla d)$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへで

Needs a bit of control of d_{E_h} and div z_h .

Control of d_h in time / of div z_h

This control is obtained by understanding how a basic shape evolves, and using comparison. Isotropic case: we estimate the (time-discrete) evolution of a ball. For B(0, R), $d_E(x) = |x| - R$ and one has the explicit solution:

$$\begin{cases} -h\operatorname{div} z + u = |x| - R \\ |z| \le 1, z \cdot Du = |Du| \end{cases} \longrightarrow u(x) = \begin{cases} |x| - R + h\frac{N-1}{|x|} & |x| \ge C\sqrt{h} \\ C'\sqrt{h} & |x| \le C\sqrt{h} \end{cases}$$

so that if $E' = \{u \leq 0\}$, $d_{E'} \approx |x| - R + Ch/R$.

This allows to control, by comparison, both the variation of d_h and div z_h :

- if $d_h(t,x) \ge R > 0$, then for s > t, $d_h(s,x) \ge R \frac{C}{R}(s-t)$ for a short time,
- but also, we deduce div $z_h \leq \frac{C}{R}$ where $d_h \geq R$.

[We use div $z^{n+1} = (u^{n+1} - d_{E^n})/h$ and a control from above for u^{n+1} .]

Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

- forcing term $V_n = -\kappa + g(x, t)$,
- (convex) mobility $V_n = -\psi(\nu_E)(\kappa + g)$,
- anisotropic surface tension $V_n = -\psi(\nu_E)(\kappa_{\phi} + g)$ where $\kappa_{\phi} = \operatorname{div}_{\tau} \nabla \phi(\nu_E)$,
- ► crystalline surface tension, case {φ ≤ 1} polytope (or simply nonsmooth, non elliptic) (see also [Giga-Giga 2001], [Giga-Pozar 2018]).

Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

• Mobility: replace Euclidean distance with ψ° -distance:

 $d_E^{\psi^\circ}(x) = \min_{y \in E} \psi^\circ(x - y) - \min_{y \notin E} \psi^\circ(y - x)$, where $\psi^\circ(x) = \sup_{\psi(\nu) \le 1} \nu \cdot x$ is the polar [\rightarrow distance is now measured along the vector field $\nabla \psi(\nu)^1$];

• Surface tension: replace $\int |Du|$ replaced with $\int \phi(-Du)^2$, Per(E) with $\int_{\partial E} \phi(\nu)$, and the equation with:

$$-h\operatorname{div} z + u = d_E, \quad z \in \partial \phi(
abla u)$$
 a.e.,

 \rightarrow then do exactly the same.

²in the sequel we assume ϕ is even.

¹In case $\psi = \phi$ this is called the "Cahn-Hoffmann" vector field.

Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

In particular, in the simpler case $\psi = \phi$ (which we consider from now on), the explicit solution for the ball is replaced with the explicit solution for the "Wulff shape" $\{\phi^{\circ} \leq R\}$ (which is the shape which is autosimilar for the motion):

$$\begin{cases} -h\operatorname{div} z + u = \phi^{\circ}(x) - R \\ z \in \partial \phi(\nabla u) \end{cases} \longrightarrow u(x) = \begin{cases} \phi^{\circ}(x) - R + h \frac{N-1}{\phi^{\circ}(x)} & \phi^{\circ}(x) \ge C\sqrt{h} \\ C'\sqrt{h} & \phi^{\circ}(x) \le C\sqrt{h} \end{cases}$$

and the proof then goes on as in the standard case (+ notions of distributional super/subflows with a comparison result).

Comparison / (generic) uniqueness is proved in [CMP 2017, CMNP 2019].

Fully discrete case?

In addition to h > 0 we consider $\varepsilon > 0$ a space discretization step. We consider a lattice ($\varepsilon \mathbb{Z}^N$ to make things simple), viewed as a graph with edges $\varepsilon \mathbb{Z}^N \times \varepsilon \mathbb{Z}^N$, and a discrete total variation

$$\mathcal{T}V_arepsilon(u) = arepsilon^{N-1}\sum_{i,j\inarepsilon\mathbb{Z}^N}eta_{i,j}|u_i-u_j|\stackrel{\mathsf{\Gamma}}{\longrightarrow}\int \phi(\mathsf{D}u) \quad ext{as }arepsilon o 0$$

where $\beta_{i,j} = \beta_{j,i} = \alpha_{(j-i)/\varepsilon}$ (non-oriented, translation invariant) and

$$\phi(\mathbf{p}) = \sum_{\mathbf{k}} \alpha_{\mathbf{k}} |\mathbf{p} \cdot \mathbf{k}|.$$

We assume $\alpha_k \geq 0$, $\alpha_k = 0$ but for a finite set of indices.

Fully discrete case

We introduce the discrete gradient $D_{\varepsilon} : \varepsilon \mathbb{Z}^N \to \varepsilon \mathbb{Z}^N \times \varepsilon \mathbb{Z}^N$ and divergence D_{ε}^* :

$$(D_{\varepsilon}u)_{i,j} = rac{u_j - u_i}{\varepsilon}, \qquad (D_{\varepsilon}^*z)_i = \sum_j rac{z_{j,i} - z_{i,j}}{\varepsilon}$$

(the sum is on j's such that $\beta_{i,j} > 0$).

Discrete LS/ATW: what anisotropies?

Remark What anisotropies are reached by this construction?

$$\phi(p) = \sum_{k} \alpha_{k} |p \cdot k| = \sum_{k} \max_{t \in [-1,1]} t \alpha_{k} k \cdot p = \max \left\{ z \cdot p : z \in \sum_{k} \alpha_{k} [-k,k] \right\}$$

is the *support function* of the set

$$W_1 = \{\phi^\circ \le 1\} = \sum_k \alpha_k [-k, k]$$

which can only be of this form: a Minkovski sum of segments. That is, a "**zonotope**". In 2D, any symmetric polyhedron is a zonotope. In higher dimension it is more restrictive since also all facets of a zonotope are zonotopes...

Discrete LS/ATW

Minimization problem

$$\min_{u} TV_{\varepsilon}(u) + \frac{\varepsilon^{N}}{2h} \sum_{i \in \varepsilon \mathbb{Z}^{N}} (u_{i} - d_{i}^{E})^{2}$$

Euler-Lagrange (or KKT), using $TV_{\varepsilon}(u) = \varepsilon^N \sup\{\langle z, D_{\varepsilon}u \rangle_{\varepsilon \mathbb{Z}^N \times \varepsilon \mathbb{Z}^N} : |z_{i,j}| \le \beta_{i,j}\}$:

$$\begin{cases} h(D_{\varepsilon}^*z)_i + u_i = d_i^E & \text{for all } i \in \varepsilon \mathbb{Z}^N, \\ |z_{i,j}| \le \beta_{i,j}, \quad z_{i,j}(u_j - u_i) = \beta_{i,j}|u_i - u_j| & \text{where } \beta_{i,j} > 0. \end{cases}$$

Then iterate and send ε , $h \rightarrow 0$.

 \rightarrow same proof?

Discrete LS/ATW [Braides, Gelli, Novaga 2010]

In [Braides, Gelli, Novaga, 2010], this is studied for $\phi(p) = |p_1| + |p_2|$, in dimension N = 2 ($\alpha_{(0,0),(0,1)} = \alpha_{(0,0),(1,0)} = 1$). The scheme is implemented in the standard way, with $E^{n+1} = \{i : u_i \leq 0\}$ and d^{n+1} the signed ℓ^{∞} -distance to E^{n+1} . In particular, at each step, a rounding at scale ε is applied.

They send then ε , $h \rightarrow 0$ and observe:

- If ε ≪ h, then as in the continuous setting, convergence to a (crystalline) mean curvature flow;
- if $\varepsilon \gg h$, then the motion is blocked, all interfaces are pinned;
- If ε ∼ h, then convergence to the curvature flow with a drift (and pinning of the interfaces of low curvature).

To get rid of the rounding effect, we need to forget about E and work only with u, d.

Discrete LS/ATW

If we want to reproduce the consistency proof as in the continuous setting, we need:

- ▶ a "redistancing" map $u^{n+1} \mapsto d^{n+1} = d[u^{n+1}]$ with $d^{n+1} \ge u^{n+1}$ where $u^{n+1} > 0$ and $d^{n+1} \le u^{n+1}$ where $u^{n+1} < 0$;
- ► a control/estimate of the evolution starting from a Wulff shape $\{i \in \varepsilon \mathbb{Z}^N : \phi^{\circ}(i) \leq R\}$, or more precisely of the process

$$d = \phi^{\circ} - R \xrightarrow{TV_{\varepsilon} - \text{minim.}} u \xrightarrow{\text{redistancing}} d[u] \stackrel{?}{\lesssim} \phi^{\circ} - R + \frac{Ch}{\phi^{\circ}};$$

Extra: a "localized" (vectorial) (z^h)_i built from (z_{i,j})_{(i,j)∈εZ^N×εZ^N}, since we want to consider its limit (and we need -D^{*}_εz^h → div z if z^h → z).

Consistent redistancing

We define a *(brute force)* redistancing operation as follows: given u 1-Lipschitz $(u_i - u_j \le \phi^{\circ}(i - j) \forall i, j \in \varepsilon \mathbb{Z}^N)$, we let:

$$\begin{cases} d^{+}[u]_{i} := \inf_{j:u_{j} < 0} u_{j} + \phi^{\circ}(j-i), \\ sd^{+}[u]_{i} := \sup_{j:u_{j} \geq 0} d^{+}[u]_{j} - \phi^{\circ}(j-i) \end{cases}$$

and similarly $sd^{-}[u] = -sd^{+}[-u]$. (We also introduce various heuristically more precise interpolations, but sd^{+} is the largest and sd^{-} the smallest). By construction, we immediately get that sd^{\pm} are 1-Lipschitz (for ϕ°), and above u where u is positive, below where u is negative.

The fully discrete scheme with consistent redistancing

Given d^0 1-Lipschitz an initial "distance function", we define iteratively d^n , $n \ge 1$ by:

$$\begin{cases} h(D_{\varepsilon}^* z^{n+1}) + u_i^{n+1} = d_i^n & \text{for all } i \in \varepsilon \mathbb{Z}^N, \\ |z_{i,j}^{n+1}| \le \beta_{i,j}, \quad z_{i,j}^{n+1}(u_j^{n+1} - u_i^{n+1}) = \beta_{i,j}|u_i^{n+1} - u_j^{n+1}| & \text{where } \beta_{i,j} > 0. \end{cases}$$

Then one shows as in the continuous case that u^{n+1} is 1-Lipschitz (using comparison + invariance by integer translations), and we let $d^{n+1} = sd^+[u^{n+1}]$. Then as before, $z_h = z^{[t/h]}$, $d_h = d^{[t/h]}$, etc. We get for free:

$$\frac{d_h(t+h)-d_h(t)}{h} \geq -D_{\varepsilon}^* z_h \text{ in } \varepsilon \mathbb{Z}^N \text{ where } d_h(t+h) \text{ is positive, etc.}$$

We still need: to control how d_h varies in time (control of the Wulff shape); to define a limiting z (with $-D_{\varepsilon}^* z_h \rightarrow \text{div } z$).

Control of the Wulff shape

We need an estimate on u which solves:

$$\begin{cases} h(D_{\varepsilon}^*z) + u_i = \phi^{\circ}(i) - R & \text{for all } i \in \varepsilon \mathbb{Z}^N, \\ |z_{i,j}| \le \beta_{i,j}, \quad z_{i,j}(u_j - u_i) = \beta_{i,j}|u_i - u_j| & \text{where } \beta_{i,j} > 0. \end{cases}$$

Lemma $sd^+[u]_i \leq \phi^{\circ}(i) - R + hC/\phi^{\circ}(i) + C'\varepsilon$ for some C > 0, $C' \geq 0$ and if $\phi^{\circ}(i) \geq C \max\{\varepsilon, \sqrt{h}\}$. If the weights $(\alpha_k)_k$ are rational, then C' = 0. [Remark: the $C'\varepsilon$ comes from the redistancing, u_i is bounded by the first terms.] Hence: if $\varepsilon \sim h$ we get a control as in the continuous setting $(d_h(s) \geq d_h(t) - (C/R)(s-t)$ if s > t and $d_h(t) \geq R > 0$). If the weights are rational, we get this control regardless the ratio ε/h . Sending $\varepsilon, h \to 0$

Theorem If $\varepsilon \to 0$, $h \to 0$, and $\varepsilon \leq h$, then $d^h \to d$ which is the signed distance function of sets E(t) evolving with the crystalline mean curvature flow:

 $V_n \in \phi^{\circ}(\nu_E)\kappa_{\phi}(x).$

If the α_k are rational, then this holds however ε , $h \to 0$.

The proof is as in the continuous case, except one first needs to introduce

$$(\mathsf{z}^h)_i = rac{1}{arepsilon} \sum_{j \in arepsilon \mathbb{Z}^N} z^h_{i,j}(t)(j-i) \in W_1$$

which is then shown to converge to a vector field z(x, t) with $z \in \partial \phi(\nabla d)$.

- We solve the total variation on a graph using Y. Boykov and V. Kolmogorov's (2004) maxflow/mincut algorithm, together with D. Hochbaum's algorithm (2001/2013) for total variation + quadratic penalization (also [C.-Darbon, 2009/12]);
- The redistancing is slow (inf-convolution formula);
- For speedup, both operations are only done in a strip around the interface. Yet the redistancing becomes very inexact if the strip is too narrow, especially for complicated interaction patterns.

Figure: Wulff shapes of initial radius $R_0 = 50$ evolved at times $t = 0, 200, 400, \dots, 1200$ for four different anisotropies (square, octagon, diamond and "almost isotropic").

Figure: Evolution of the radius for the square, octogonal, diamond and "almost isotropic" anisotropies.

Figure: Evolution of an initial octagon with $R_0 = 10$ at times 0,7,14,... Left: $\varepsilon = 1$, h = 0.1, middle: $\varepsilon = 0.1$, h = 0.1, right: $\varepsilon = 0.1$, h = 0.5.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Figure: Evolution of the radius for an initial octagon with $R_0 = 10$ until the vanishing time t = 50. Left: $\varepsilon = 1$, h = 0.1, middle: $\varepsilon = 0.1$, h = 0.1, right: $\varepsilon = 0.1$, h = 0.5.

Perspectives/extensions

 Isotropic case(!) discretized using a (2N + 1)-points approximation of the Laplacian and the Euclidean distance;

Figure: Left, t = 0, 20, ..., 200, right, t = 0, 25, 50, ..., 250 then t = 375, 500, ..., 1250.

Nonlinear case (with a nonlinear profile tanh(d_E)): partial justification of "learned" algorithms (Bretin, Denis, Masnou, Terii 2022).

Thank you for your attention

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● のへで