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Implicit MCF for boundaries [Luckhaus-Sturzenhecker 1995], [Almgren-Taylor-Wang 1993]

E 0 given, h > 0 time-step, for each n En+1 is found by:

min
E

Per(E ) +
1
h

∫

E△En

dist(x , ∂En)dx

so that on ∂En+1:
± dist(x , ∂En) = hκ∂En+1(x).

(Almost) equivalent formulation (cf. [C, 2004])

min
u

∫
|Du|+ 1

2h

∫
(u − dEn)2dx −→ En+1 = {u ≤ 0}

where dEn = dist(x ,En)− dist(x , ∁En) is the signed distance to ∂En. Based on this
formulation, (very) simple proof of consistency in [C-Novaga, 2007].



Implicit MCF for boundaries [Luckhaus-Sturzenhecker 1995], [Almgren-Taylor-Wang 1993]

E 0 given, h > 0 time-step, for each n En+1 is found by:

min
E

Per(E ) +
1
h

∫

E△En

dist(x , ∂En)dx ↔ minE E(E) + 1
2h dist(E ,En)2

so that on ∂En+1:
± dist(x , ∂En) = hκ∂En+1(x).

(Almost) equivalent formulation (cf. [C, 2004])

min
u

∫
|Du|+ 1

2h

∫
(u − dEn)2dx −→ En+1 = {u ≤ 0}

where dEn = dist(x ,En)− dist(x , ∁En) is the signed distance to ∂En. Based on this
formulation, (very) simple proof of consistency in [C-Novaga, 2007].



Implicit MCF for boundaries

Almost equivalent formulation: solve



−h div zn+1 + un+1 = dEn

|zn+1| ≤ 1, zn+1 · Dun+1 = |Dun+1|
in RN −→ En+1 = {un+1 ≤ 0}

which is the Euler-Lagrange eq. for the previous problem (but makes sense also for
unbounded ∂En).
Then (easy by comparison), dEn 1-Lipschitz ⇒ un+1 1-Lipschitz (and z · Du = |Du|
reads z = ∇u/|∇u| a.e. where ∇u ̸= 0, or equivalently z ∈ ∂| · |(∇u) a.e.)

−→ follows another very simple scheme of proof of consistency:



Implicit MCF for boundaries

Since un+1 is 1-Lipschitz, one has




dEn+1(x) ≥ un+1(x) where un+1 > 0

dEn+1(x) ≤ un+1(x) where un+1 < 0
, so that:

un+1 − dEn

h
= div zn+1

implies: 



dEn+1 − dEn

h
≥ div zn+1 where dEn+1 > 0

dEn+1 − dEn

h
≤ div zn+1 where dEn+1 < 0.



Implicit MCF for boundaries

so if Eh(t) = E [t/h], zh(t) = z [t/h] ([·] =integer part), and dEh(t)(x) → d(x , t),
zh → z(x , t) as h → 0, one has trivially:

∂d

∂t
≥ div z where d > 0,

∂d

∂t
≤ div z where d < 0.

at least in the distributional sense. Together with z ∈ ∂| · |(∇d) (i.e., = ∇d here), this
is

∂d

∂t
≥ ∆d where d > 0,

∂d

∂t
≤ ∆d where d < 0

which characterizes the fact that d(x , t) = dist(x ,E (t))− dist(x , ∁E (t)) where E (t)

evolves by its mean curvature (cf in particular [Soner, 1993]).



Implicit MCF for boundaries

Non obvious points:

▶ dEh
is 1-Lipschitz in space but what regularity in time to get some (useful)

compactness?

▶ zh
∗
⇀ z , zh ∈ ∂| · |(∇uh), uh → d ... but how can we be sure that in the limit

z ∈ ∂| · |(∇d)?

Needs a bit of control of dEh
and div zh.



Control of dh in time / of div zh
This control is obtained by understanding how a basic shape evolves, and using
comparison. Isotropic case: we estimate the (time-discrete) evolution of a ball. For
B(0,R), dE (x) = |x | − R and one has the explicit solution:




−h div z + u = |x | − R

|z | ≤ 1, z · Du = |Du|
−→ u(x) =




|x | − R + hN−1

|x | |x | ≥ C
√
h

C ′√h |x | ≤ C
√
h

so that if E ′ = {u ≤ 0}, dE ′ ≈ |x | − R + Ch/R .

This allows to control, by comparison, both the variation of dh and div zh:

▶ if dh(t, x) ≥ R > 0, then for s > t, dh(s, x) ≥ R − C
R (s − t) for a short time ,

▶ but also, we deduce div zh ≤ C
R where dh ≥ R .

[We use div zn+1 = (un+1 − dE n)/h and a control from above for un+1.]



Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

▶ forcing term Vn = −κ+ g(x , t),

▶ (convex) mobility Vn = −ψ(νE )(κ+ g),

▶ anisotropic surface tension Vn = −ψ(νE )(κϕ + g) where κϕ = div τ∇ϕ(νE ),
▶ crystalline surface tension, case {ϕ ≤ 1} polytope (or simply nonsmooth, non

elliptic) (see also [Giga-Giga 2001], [Giga-Pozar 2018]).



Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

• Mobility: replace Euclidean distance with ψ◦-distance:
dψ

◦

E (x) = miny∈E ψ
◦(x − y)−miny ̸∈E ψ

◦(y − x), where ψ◦(x) = supψ(ν)≤1 ν · x is the
polar [→ distance is now measured along the vector field ∇ψ(ν)1];
• Surface tension: replace

∫
|Du| replaced with

∫
ϕ(−Du)2, Per(E ) with

∫
∂E ϕ(ν), and

the equation with:
−h div z + u = dE , z ∈ ∂ϕ(∇u) a.e.,

→ then do exactly the same.

1In case ψ = ϕ this is called the “Cahn-Hoffmann” vector field.
2in the sequel we assume ϕ is even.



Extensions [C.-Morini-Ponsiglione 2017, C.-Morini-Novaga-Ponsiglione 2019]

In particular, in the simpler case ψ = ϕ (which we consider from now on), the explicit
solution for the ball is replaced with the explicit solution for the “Wulff shape”
{ϕ◦ ≤ R} (which is the shape which is autosimilar for the motion):



−h div z + u = ϕ◦(x)− R

z ∈ ∂ϕ(∇u)
−→ u(x) =




ϕ◦(x)− R + h N−1

ϕ◦(x) ϕ◦(x) ≥ C
√
h

C ′√h ϕ◦(x) ≤ C
√
h

and the proof then goes on as in the standard case (+ notions of distributional
super/subflows with a comparison result).

Comparison / (generic) uniqueness is proved in [CMP 2017, CMNP 2019].



Fully discrete case?

In addition to h > 0 we consider ε > 0 a space discretization step. We consider a
lattice (εZN to make things simple), viewed as a graph with edges εZN × εZN , and a
discrete total variation

TVε(u) = εN−1
∑

i ,j∈εZN

βi ,j |ui − uj | Γ−→
∫
ϕ(Du) as ε→ 0

where βi ,j = βj ,i = α(j−i)/ε (non-oriented, translation invariant) and

ϕ(p) =
∑

k

αk |p · k|.

We assume αk ≥ 0, αk = 0 but for a finite set of indices.



Fully discrete case

We introduce the discrete gradient Dε : εZN → εZN × εZN and divergence D∗
ε :

(Dεu)i ,j =
uj − ui
ε

, (D∗
ε z)i =

∑

j

zj ,i − zi ,j
ε

(the sum is on j ’s such that βi,j > 0).



Discrete LS/ATW: what anisotropies?

Remark What anisotropies are reached by this construction?

ϕ(p) =
∑

k

αk |p · k| =
∑

k

max
t∈[−1,1]

tαkk · p = max

{
z · p : z ∈

∑

k

αk [−k , k]

}

is the support function of the set

W1 = {ϕ◦ ≤ 1} =
∑

k

αk [−k , k]

which can only be of this form: a Minkovski sum of segments. That is, a “zonotope”.
In 2D, any symmetric polyhedron is a zonotope. In higher dimension it is more
restrictive since also all facets of a zonotope are zonotopes...



Discrete LS/ATW

Minimization problem

min
u

TVε(u) +
εN

2h

∑

i∈εZN

(ui − dE
i )

2

Euler-Lagrange (or KKT), using TVε(u) = εN sup{⟨z ,Dεu⟩εZN×εZN : |zi ,j | ≤ βi ,j}:



h(D∗

ε z)i + ui = dE
i for all i ∈ εZN ,

|zi ,j | ≤ βi ,j , zi ,j(uj − ui ) = βi ,j |ui − uj | where βi ,j > 0.

Then iterate and send ε, h → 0.

; same proof?



Discrete LS/ATW [Braides, Gelli, Novaga 2010]

In [Braides, Gelli, Novaga, 2010], this is studied for ϕ(p) = |p1|+ |p2|, in dimension
N = 2 (α(0,0),(0,1) = α(0,0),(1,0) = 1). The scheme is implemented in the standard way,
with En+1 = {i : ui ≤ 0} and dn+1 the signed ℓ∞-distance to En+1. In particular, at
each step, a rounding at scale ε is applied.
They send then ε, h → 0 and observe:

▶ if ε≪ h, then as in the continuous setting, convergence to a (crystalline) mean
curvature flow;

▶ if ε≫ h, then the motion is blocked, all interfaces are pinned;

▶ if ε ∼ h, then convergence to the curvature flow with a drift (and pinning of the
interfaces of low curvature).

To get rid of the rounding effect, we need to forget about E and work only with u, d .



Discrete LS/ATW

If we want to reproduce the consistency proof as in the continuous setting, we need:

▶ a “redistancing” map un+1 7→ dn+1 = d [un+1] with dn+1 ≥ un+1 where un+1 > 0
and dn+1 ≤ un+1 where un+1 < 0;

▶ a control/estimate of the evolution starting from a Wulff shape
{i ∈ εZN : ϕ◦(i) ≤ R}, or more precisely of the process

d = ϕ◦ − R
TVε−minim.−→ u

redistancing−→ d [u]
?

≲ ϕ◦ − R +
Ch

ϕ◦
;

▶ Extra: a “localized” (vectorial) (zh)i built from (zi ,j)(i ,j)∈εZN×εZN , since we want to
consider its limit (and we need −D∗

ε z
h → div z if zh → z).



Consistent redistancing

We define a (brute force) redistancing operation as follows: given u 1-Lipschitz
(ui − uj ≤ ϕ◦(i − j)∀i , j ∈ εZN), we let:




d+[u]i := inf j :uj<0 uj + ϕ◦(j − i) ,

sd+[u]i := supj :uj≥0 d
+[u]j − ϕ◦(j − i)

and similarly sd−[u] = −sd+[−u]. (We also introduce various heuristically more precise
interpolations, but sd+ is the largest and sd− the smallest). By construction, we
immediately get that sd± are 1-Lipschitz (for ϕ◦), and above u where u is positive,
below where u is negative.



The fully discrete scheme with consistent redistancing

Given d0 1-Lipschitz an initial “distance function”, we define iteratively dn, n ≥ 1 by:



h(D∗

ε z
n+1) + un+1

i = dn
i for all i ∈ εZN ,

|zn+1
i ,j | ≤ βi ,j , zn+1

i ,j (un+1
j − un+1

i ) = βi ,j |un+1
i − un+1

j | where βi ,j > 0.

Then one shows as in the continuous case that un+1 is 1-Lipschitz (using comparison +

invariance by integer translations), and we let dn+1 = sd+[un+1].
Then as before, zh = z [t/h], dh = d [t/h], etc. We get for free:

dh(t + h)− dh(t)

h
≥ −D∗

ε zh in εZN where dh(t + h) is positive, etc.

We still need: to control how dh varies in time (control of the Wulff shape); to define a
limiting z (with −D∗

ε zh → div z).



Control of the Wulff shape

We need an estimate on u which solves:



h(D∗

ε z) + ui = ϕ◦(i)− R for all i ∈ εZN ,

|zi ,j | ≤ βi ,j , zi ,j(uj − ui ) = βi ,j |ui − uj | where βi ,j > 0.

Lemma sd+[u]i ≤ ϕ◦(i)− R + hC/ϕ◦(i) + C ′ε for some C > 0, C ′ ≥ 0 and if
ϕ◦(i) ≥ C max{ε,

√
h}. If the weights (αk)k are rational, then C ′ = 0.

[Remark: the C ′ε comes from the redistancing, ui is bounded by the first terms.]

Hence: if ε ∼ h we get a control as in the continuous setting
(dh(s) ≥ dh(t)− (C/R)(s − t) if s > t and dh(t) ≥ R > 0). If the weights are rational,
we get this control regardless the ratio ε/h.



Sending ε, h → 0

Theorem If ε→ 0, h → 0, and ε ≲ h, then dh → d which is the signed distance
function of sets E (t) evolving with the crystalline mean curvature flow:

Vn ∈ ϕ◦(νE )κϕ(x).

If the αk are rational, then this holds however ε, h → 0.

The proof is as in the continuous case, except one first needs to introduce

(zh)i =
1
ε

∑

j∈εZN

zhi ,j(t)(j − i) ∈ W1

which is then shown to converge to a vector field z(x , t) with z ∈ ∂ϕ(∇d).



Examples

▶ We solve the total variation on a graph using Y. Boykov and V. Kolmogorov’s
(2004) maxflow/mincut algorithm, together with D. Hochbaum’s algorithm
(2001/2013) for total variation + quadratic penalization (also [C.-Darbon,
2009/12]);

▶ The redistancing is slow (inf-convolution formula);

▶ For speedup, both operations are only done in a strip around the interface. Yet the
redistancing becomes very inexact if the strip is too narrow, especially for
complicated interaction patterns.
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Figure: Wulff shapes of initial radius R0 = 50 evolved at times t = 0, 200, 400, . . . , 1200 for
four different anisotropies (square, octagon, diamond and “almost isotropic”).
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Figure: Evolution of the radius for the square, octogonal, diamond and “almost isotropic”
anisotropies.
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Figure: Evolution of an initial octagon with R0 = 10 at times 0, 7, 14, . . . . Left: ε = 1, h = 0.1,
middle: ε = 0.1, h = 0.1, right: ε = 0.1, h = 0.5.



Examples

0

2

4

6

8

10

0 10 20 30 40 50

computed radius√
R2

0 − 2t

0

2

4

6

8

10

0 10 20 30 40 50

computed radius√
R2

0 − 2t

0

2

4

6

8

10

0 10 20 30 40 50

computed radius√
R2

0 − 2t

Figure: Evolution of the radius for an initial octagon with R0 = 10 until the vanishing time
t = 50. Left: ε = 1, h = 0.1, middle: ε = 0.1, h = 0.1, right: ε = 0.1, h = 0.5.



Perspectives/extensions

▶ Isotropic case(!) discretized using a (2N + 1)-points approximation of the
Laplacian and the Euclidean distance;
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Figure: Left, t = 0, 20, . . . , 200, right, t = 0, 25, 50, . . . , 250 then t = 375, 500, . . . , 1250.

▶ Nonlinear case (with a nonlinear profile tanh(dE )): partial justification of “learned”
algorithms (Bretin, Denis, Masnou, Terii 2022).



Thank you for your attention


