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An inverse problem
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A simple formalism

m Observation of £ ¢ RN

y = AX

m Linear inverse problem in high dimension

m Matrix A under-determined, finite number m of
measurements

m In this presentation: noiseless case
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Dimension reduction and low complexity

m Low-dimensional regularity model ¥ (homogeneous
set): R
Xexr
m i.e. X can be described by few parameters
Examples:

m Image super-resolution: VX is a sparse gradient

m Generalized sparsity, low-rank models (matrices,
tensors)

m Deep priors (modeled with deep neural networks)
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Objective

Given a low dimensional model 2, what is the
best method to recover X from y 7

= Problem: define "best”; specify " method”
= Must consider both explicit and /learned models

= In this talk the "non-convex algorithmic” approach
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Accelerated state of the art (convex methods)

The constrained minimization

*=a in R(x) s.t. Ax =
X" = arg min R(x) x=y

yields a stable and robust estimation of X for some operators A,
models £ and convex regularizers R.

m eg. Y = sparse vectors, R = (*-norm, A = Gaussian
measurements

m [T., Gribonval, Vaiter, 2024] A theory of optimal convex
regularization : maximize compliance between R and ¥

m Application to image decomposition [Guennec, Aujol, T.,
2024]
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Optimal recovery with non-convex methods?

m Algorithms not necessarily linked with underlying
functional (with learned models)

m ldea: build a framework for optimal methods in this
context

= Give recovery guarantees for a class of recovery
algorithms: Generalized PGD

= Optimize rate of convergence within this class of
algorithms
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Generalized Projected Gradient Descent

Consider the iterations

Xn+1 = Px(xn) — MAT(APZ(Xn) - )
with Py a generalized projection onto a set
m Sparse recovery: Py = Py = HT(-), orthogonal PGD =
Iterative hard thresholding

m Deep projective prior (auto-encoder): Py = fp o fg = neural
network with explicit low-dimensional latent representation

m Deep projective prior (plug and play, diffusion): Ps = D =
denoiser parametrized by a neural network
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Restricted isometry constant

The operator B has restricted isometry constant § < 1
w.r.t 2 if for all xq,x €

(I = B)(x1 — x2)[l2 < d[|x1 — xof|2

m Quantifies the " conditioning” of A with respect to
Y through 6(uATA)

m Classical condition in low-dimensional recovery
(close to a necessary condition)

Towards optimal algorithms for the recovery of low-dimensional models



Linear recovery with GPGD

Theorem: [T., Aujol, Guennec, 2024] Suppose uATA
has RIC ¢, Py any projection having a restricted

B-Lipschitz property. Consider GPGD iterations.
Then

1% = Xl[2 < (058)" X0 — |2

m Conjecture that GPGD are near-optimal in the
wider class x,.1 = x, — u(AT(Ax — y) + g(x,))

Towards optimal algorithms for the recovery of low-dimensional models 10



Restricted (-Lipschitz property

For any z € RN,X €2,
1Ps(z) — x|[2 < Bl|z — x|

m Quantifies global linear convergence rate and
identifiability (condition 63 < 1)
m Optimal PGD method = minimize 3(Psx)

m Theorem: For homogeneous sets, the orthogonal
projection on X (if it exists) has a Restricted
Lipschitz property 5 < 2.
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Optimality of hard thresholding for sparse recovery?

m > =73, set of k-sparse vectors, Py (-) = HT(),
orthogonal PGD = lterative hard thresholding.

m HT(-) not globally Lipschitz
m Theorem: For sparse recovery, Pi(-) = HT(+) has

restricted Lipschitz constant 5y = \/%ﬁ ~ 1.618

(with 8 > 1.567 for small k) and is optimal when
considering all possible k

m For a given sparsity, the question is still open
(conjecture: surprisingly, not the orthogonal
projection in general)
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Linear rates for plug and play methods

m Plug and play method = state of the art imaging
method

m Use a general purpose learned denoiser D (e.g. a
U-NET) as a projection operator

Xp1 =D (xn — ,uAT(Ax,, — y))

m If D is restricted Lipschitz with respect to
Y = Fix(D) and A has the RIP w.r.t ¥ then we
have linear convergence to X € Fix(D) .

Towards optimal algorithms for the recovery of low-dimensional models 13



Experiments
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Linear recovery of a fixed point of the PNP-PGM method with a general
purpose DRUNET denoiser (synthetic images)
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Experiments
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Linear recovery of a fixed point of PNP-PGM method with a general purpose
DRUNET denoiser (natural images)
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Optimal recovery of low dimensional models

m Performance guarantees for general class of
algorithms, definition of an optimality criterion

m A flexible framework bridging low-dimensional
recovery theory and learning-based approaches

m See also [Joundi, Newson, T., 2025]: orthogonal
regularization of the learned projection yielding
improved recovery

Future work
m Stability analysis

m Generalize class of algorithms
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Thanks !

Towards optimal algorithms for the recovery of low
dimensional-models, T., Aujol and Guennec, preprint, 2024.

Stochastic orthogonal regularization for deep projective priors.
Joundi, Newson, T., preprint, 2025.

A theory of optimal convex regularization for low-dimensional
recovery, T., Gribonval and Vaiter, Information and Inference,
2024

Adaptive Parameter Selection For Gradient-sparse + Low
Patch-rank Recovery: Application To Image Decomposition.
Guennec, Aujol, T., EUSIPCO 2024.
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