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An inverse problem

Low resolution image High resolution image
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A simple formalism

Observation of x̂ ∈ RN

y = Ax̂

Linear inverse problem in high dimension

Matrix A under-determined, finite number m of
measurements

In this presentation: noiseless case
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Dimension reduction and low complexity

Low-dimensional regularity model Σ (homogeneous
set):

x̂ ∈ Σ

i.e. x̂ can be described by few parameters

Examples:

Image super-resolution: ∇x̂ is a sparse gradient

Generalized sparsity, low-rank models (matrices,
tensors)

Deep priors (modeled with deep neural networks)
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Objective

Given a low dimensional model Σ, what is the
best method to recover x̂ from y ?

⇒ Problem: define ”best”; specify ”method”

⇒ Must consider both explicit and learned models

⇒ In this talk the ”non-convex algorithmic“ approach
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Accelerated state of the art (convex methods)

The constrained minimization

x∗ = arg min
x∈RN

R(x) s.t. Ax = y

yields a stable and robust estimation of x̂ for some operators A,
models Σ and convex regularizers R .

e.g. Σ = sparse vectors, R = ℓ1-norm, A = Gaussian
measurements

[T., Gribonval, Vaiter, 2024] A theory of optimal convex
regularization : maximize compliance between R and Σ

Application to image decomposition [Guennec, Aujol, T.,
2024]
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Optimal recovery with non-convex methods?

Algorithms not necessarily linked with underlying
functional (with learned models)

Idea: build a framework for optimal methods in this
context

⇒ Give recovery guarantees for a class of recovery
algorithms: Generalized PGD

⇒ Optimize rate of convergence within this class of
algorithms

Towards optimal algorithms for the recovery of low-dimensional models 7



Generalized Projected Gradient Descent

Consider the iterations

xn+1 = PΣ(xn)− µAT (APΣ(xn)− y).

with PΣ a generalized projection onto a set Σ

Sparse recovery: PΣ = P⊥
Σ = HT(·), orthogonal PGD =

Iterative hard thresholding

Deep projective prior (auto-encoder): PΣ = fD ◦ fE = neural
network with explicit low-dimensional latent representation

Deep projective prior (plug and play, diffusion): PΣ = D =
denoiser parametrized by a neural network
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Restricted isometry constant

The operator B has restricted isometry constant δ < 1
w.r.t Σ if for all x1, x2 ∈ Σ

∥(I − B)(x1 − x2)∥2 ≤ δ∥x1 − x2∥2

Quantifies the ”conditioning” of A with respect to
Σ through δ(µATA)

Classical condition in low-dimensional recovery
(close to a necessary condition)
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Linear recovery with GPGD

Theorem: [T., Aujol, Guennec, 2024] Suppose µATA
has RIC δ, PΣ any projection having a restricted
β-Lipschitz property. Consider GPGD iterations.
Then

∥xn − x̂∥2 ≤ (δβ)n∥x0 − x̂∥2.

Conjecture that GPGD are near-optimal in the
wider class xn+1 = xn − µ(AT (Ax − y) + g(xn))
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Restricted β-Lipschitz property

For any z ∈ RN , x ∈ Σ,

∥PΣ(z)− x∥2 ≤ β∥z − x∥

Quantifies global linear convergence rate and
identifiability (condition δβ < 1)

Optimal PGD method = minimize β(PΣ)

Theorem: For homogeneous sets, the orthogonal
projection on Σ (if it exists) has a Restricted
Lipschitz property β ≤ 2.
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Optimality of hard thresholding for sparse recovery?

Σ = Σk , set of k-sparse vectors, P⊥
Σ (·) = HT(·),

orthogonal PGD = Iterative hard thresholding.

HT(·) not globally Lipschitz

Theorem: For sparse recovery,P⊥
Σ (·) = HT(·) has

restricted Lipschitz constant β0 =
√

3+
√
5

2 ≈ 1.618

(with β ≥ 1.567 for small k) and is optimal when
considering all possible k

For a given sparsity, the question is still open
(conjecture: surprisingly, not the orthogonal
projection in general)
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Linear rates for plug and play methods

Plug and play method = state of the art imaging
method

Use a general purpose learned denoiser D (e.g. a
U-NET) as a projection operator

xn+1 = D
(
xn − µAT (Axn − y)

)
If D is restricted Lipschitz with respect to
Σ = Fix(D) and A has the RIP w.r.t Σ then we
have linear convergence to x̂ ∈ Fix(D) .
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Experiments

Linear recovery of a fixed point of the PNP-PGM method with a general
purpose DRUNET denoiser (synthetic images)
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Experiments

Linear recovery of a fixed point of PNP-PGM method with a general purpose
DRUNET denoiser (natural images)
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Optimal recovery of low dimensional models

Performance guarantees for general class of
algorithms, definition of an optimality criterion

A flexible framework bridging low-dimensional
recovery theory and learning-based approaches

See also [Joundi, Newson, T., 2025]: orthogonal
regularization of the learned projection yielding
improved recovery

Future work

Stability analysis

Generalize class of algorithms
Towards optimal algorithms for the recovery of low-dimensional models 16



Thanks !
Towards optimal algorithms for the recovery of low

dimensional-models, T., Aujol and Guennec, preprint, 2024.

Stochastic orthogonal regularization for deep projective priors.

Joundi, Newson, T., preprint, 2025.

A theory of optimal convex regularization for low-dimensional

recovery, T., Gribonval and Vaiter, Information and Inference,

2024

Adaptive Parameter Selection For Gradient-sparse + Low

Patch-rank Recovery: Application To Image Decomposition.

Guennec, Aujol, T., EUSIPCO 2024.
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