Towards optimal algorithms for the recovery of low-dimensional models with linear rates

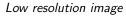
Vers des algorithmes optimaux pour la reconstruction de modèles de faible dimension

SMAI 2025

Yann Traonmilin (CNRS,IMB)

Collaborators: J.-F. Aujol (IMB), R. Gribonval (INRIA Lyon), A. Guennec (IMB), A. Joundi (IMB), A. Newson (ISIR), S. Vaiter (CNRS Nice)

An inverse problem



High resolution image

Towards optimal algorithms for the recovery of low-dimensional models

• Observation of
$$\hat{x} \in \mathbb{R}^N$$

$$y = A\hat{x}$$

- Linear inverse problem in high dimension
- Matrix A under-determined, finite number m of measurements
- In this presentation: noiseless case

Dimension reduction and low complexity

- Low-dimensional regularity model Σ (homogeneous set): $\hat{x} \in \Sigma$
- i.e. \hat{x} can be described by few parameters Examples:
 - **Image super-resolution**: $\nabla \hat{x}$ is a sparse gradient
 - Generalized sparsity, low-rank models (matrices, tensors)
 - Deep priors (modeled with deep neural networks)

Given a low dimensional model Σ , what is the best method to recover \hat{x} from y ?

- \Rightarrow Problem: define "best"; specify "method"
- \Rightarrow Must consider both explicit and *learned* models
- $\Rightarrow\,$ In this talk the "non-convex algorithmic" approach

The constrained minimization

$$x^* = \arg\min_{x \in \mathbb{R}^N} R(x) \ s.t. \ Ax = y$$

yields a stable and robust estimation of \hat{x} for some operators A, models Σ and convex regularizers R.

- e.g. Σ = sparse vectors, $R = \ell^1$ -norm, A = Gaussian measurements
- [T., Gribonval, Vaiter, 2024] A theory of optimal convex regularization : maximize compliance between R and Σ
- Application to image decomposition [Guennec, Aujol, T., 2024]

Optimal recovery with non-convex methods?

- Algorithms not necessarily linked with underlying functional (with learned models)
- Idea: build a framework for optimal methods in this context
- ⇒ Give recovery guarantees for a class of recovery algorithms: Generalized PGD
- $\Rightarrow\,$ Optimize rate of convergence within this class of algorithms

Consider the iterations

$$x_{n+1} = P_{\Sigma}(x_n) - \mu A^{T}(AP_{\Sigma}(x_n) - y).$$

with ${\it P}_{\Sigma}$ a generalized projection onto a set Σ

- Sparse recovery: P_Σ = P[⊥]_Σ = HT(·), orthogonal PGD = Iterative hard thresholding
- Deep projective prior (auto-encoder): $P_{\Sigma} = f_D \circ f_E$ = neural network with explicit low-dimensional latent representation
- Deep projective prior (plug and play, diffusion): $P_{\Sigma} = D =$ denoiser parametrized by a neural network

The operator *B* has restricted isometry constant $\delta < 1$ w.r.t Σ if for all $x_1, x_2 \in \Sigma$

$$\|(I-B)(x_1-x_2)\|_2 \leq \delta \|x_1-x_2\|_2$$

- Quantifies the "conditioning" of A with respect to Σ through δ(µA^TA)
- Classical condition in low-dimensional recovery (close to a necessary condition)

Theorem: [**T**., Aujol, Guennec, 2024] Suppose $\mu A^T A$ has RIC δ , P_{Σ} any projection having a **restricted** β -Lipschitz property. Consider GPGD iterations. Then

$$\|x_n - \hat{x}\|_2 \leq (\delta\beta)^n \|x_0 - \hat{x}\|_2.$$

• Conjecture that GPGD are near-optimal in the wider class $x_{n+1} = x_n - \mu(A^T(Ax - y) + g(x_n))$

Restricted β -Lipschitz property

For any $z \in \mathbb{R}^N, x \in \Sigma$,

$$\|P_{\Sigma}(z) - x\|_2 \leq \beta \|z - x\|$$

- Quantifies global linear convergence rate and identifiability (condition δβ < 1)</p>
- Optimal PGD method = minimize $\beta(P_{\Sigma})$
- Theorem: For homogeneous sets, the orthogonal projection on Σ (if it exists) has a Restricted Lipschitz property β ≤ 2.

Optimality of hard thresholding for sparse recovery?

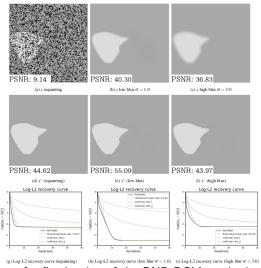
- $\Sigma = \Sigma_k$, set of *k*-sparse vectors, $P_{\Sigma}^{\perp}(\cdot) = \operatorname{HT}(\cdot)$, orthogonal PGD = Iterative hard thresholding.
- $HT(\cdot)$ not globally Lipschitz
- **Theorem:** For sparse recovery, $P_{\Sigma}^{\perp}(\cdot) = \mathrm{HT}(\cdot)$ has restricted Lipschitz constant $\beta_0 = \sqrt{\frac{3+\sqrt{5}}{2}} \approx 1.618$ (with $\beta \ge 1.567$ for small k) and is **optimal** when considering all possible k
- For a given sparsity, the question is still open (conjecture: surprisingly, not the orthogonal projection in general)

- Plug and play method = state of the art imaging method
- Use a general purpose *learned* denoiser D (e.g. a U-NET) as a projection operator

$$x_{n+1} = D\left(x_n - \mu A^T (Ax_n - y)\right)$$

■ If *D* is **restricted** Lipschitz with respect to $\Sigma = Fix(D)$ and *A* has the RIP w.r.t Σ then we have linear convergence to $\hat{x} \in Fix(D)$.

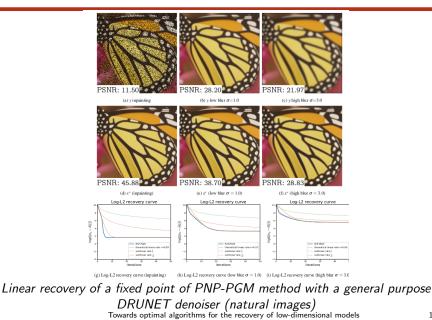
Experiments



Linear recovery of a fixed point of the PNP-PGM method with a general purpose DRUNET denoiser (synthetic images)

Towards optimal algorithms for the recovery of low-dimensional models

Experiments



Optimal recovery of low dimensional models

- Performance guarantees for general class of algorithms, definition of an optimality criterion
- A flexible framework bridging low-dimensional recovery theory and learning-based approaches
- See also [Joundi, Newson, **T.**, 2025]: orthogonal regularization of the learned projection yielding improved recovery

Future work

- Stability analysis
- Generalize class of algorithms

Towards optimal algorithms for the recovery of low-dimensional models

Thanks !

- Towards optimal algorithms for the recovery of low dimensional-models, **T.**, Aujol and Guennec, preprint, 2024.
- Stochastic orthogonal regularization for deep projective priors. Joundi, Newson, T., preprint, 2025.
- A theory of optimal convex regularization for low-dimensional recovery, T., Gribonval and Vaiter, Information and Inference, 2024
- Adaptive Parameter Selection For Gradient-sparse + Low Patch-rank Recovery: Application To Image Decomposition. Guennec, Aujol, T., EUSIPCO 2024.