Vitesses de propagation pour des équations de réaction-diffusion multistable

Thomas GILETTI

Biennale de la SMAI

Juin 2025

Introduction

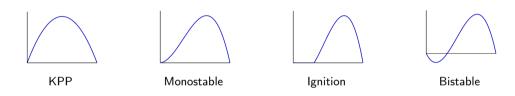
Soit une équation de réaction-diffusion scalaire

$$\partial_t u = div(A(x)\nabla u) + f(x, u), \quad t > 0, \ x \in \mathbb{R}^N.$$

- On fera l'hypothèse générique suivante:
 - l'équation admet un nombre fini d'état stationnaires qui sont tous non dégénérés (i.e. linéairement stables ou linéairement instables)
- L'objectif est de déterminer le comportement en temps grand des solutions:
 - convergence vers un ou plusieurs états d'équilibre;
 - description de cette convergence, phénomène de propagation...

Quelques cas classiques

▶ D'après [Fisher,KPP,Aronson-Weinberger], si dimension N = 1, diffusion A = 1, et la réaction f est homogène et de l'un des types suivants:



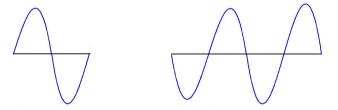
alors il existe des **fronts progressifs**, i.e., des solutions de la forme U(x-ct) telles que

$$1 = U(-\infty) > U(\cdot) > U(+\infty) = 0.$$

De plus ils sont stables et décrivent le comportement en temps grand des solutions.

Quelques cas classiques

- ► En revanche, pour certains choix de *f* il ne peut pas exister un tel front reliant directement les états d'équilibre extrêmaux:
 - ▶ si $f \equiv 0$, ou si f de l'un des types suivant:



on introduit alors la notion de **décomposition minimale** [Fife-McLeod] ou de **terrasse de propagation**.

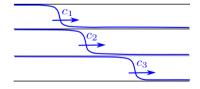
Notion de terrasse

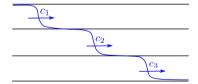
- Définition: Une terrasse de propagation est constituée:
 - d'une suite finie d'états stationnaires périodiques

$$p_1 = 1 > p_2 > \cdots > p_K = 0;$$

d'une suite finie de fronts *pulsatoires* $(U_k)_{1 \le k \le K}$ connectant respectivement les états $p_k > p_{k+1}$, dont les vitesses sont ordonnées

$$c_1 \leq c_2 \leq \cdots \leq c_K$$
.





- ► <u>Théorème</u> [G-Rossi]: Sous l'hypothèse multistable périodique en dimension quelconque N:
 - ▶ il existe une terrasse de propagation dans toute direction $e \in S^{N-1}$;
 - les états intermédiaires de cette terrasse sont tous stables;
 - cette terrasse est unique dès qu'elle n'inclut pas un front de vitesse nulle.
- Voir aussi:
 - sur les terrasses, [Fife-McLeod] dans le cas homogène, [Ducrot-G-Matano] en dimension 1, [Polacik] dans un cadre plus dégénéré...
 - ▶ dans le cas bistable, [Xin] par perturbation, [Fang-Zhao] en dim. 1 ou [Ducrot]...
 - dans les cas monostable et KPP, [Weinberger] ou encore e.g. [Berestycki-Hamel-Roques]...

- ▶ On propose dans [G-Rossi] une approche:
 - inspirée par les systèmes dynamiques monotones [Weinberger];
 - applicable à l'équation périodique en dimension quelconque, voire à tout système de réaction-diffusion monotone.
- ▶ <u>Idée</u>: perturber la solution pour la rendre monotone dans tout repère mobile de vitesse c et forcer la convergence quand $t \to +\infty$.
- Malgré tout, pour simplifier on présente cette méthode dans le cas homogène en dimension N=1.

On note ici

la solution de $\partial_t u = \partial_x^2 u + f(u)$ avec $u(t = 0, \cdot) = g(\cdot)$.

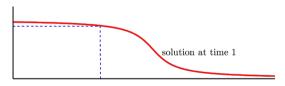
$$u_{c,n+1}(\cdot) = \max\{u_0(\cdot), u(1, \cdot + c; u_{c,n})\}.$$

- ▶ si on ignore le max, cette suite dénote simplement la solution du problème de Cauchy aux temps entiers dans le repère mobile de vitesse c;
- l'ajout du max rend cette suite monotone (par principe de comparaison).

On note ici

la solution de $\partial_t u = \partial_x^2 u + f(u)$ avec $u(t = 0, \cdot) = g(\cdot)$.

$$u_{c,n+1}(\cdot) = \max\{u_0(\cdot), u(1, \cdot + c; u_{c,n})\}.$$

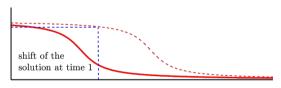


- si on ignore le max, cette suite dénote simplement la solution du problème de Cauchy aux temps entiers dans le repère mobile de vitesse c;
- l'ajout du max rend cette suite monotone (par principe de comparaison).

On note ici

la solution de $\partial_t u = \partial_x^2 u + f(u)$ avec $u(t = 0, \cdot) = g(\cdot)$.

$$u_{c,n+1}(\cdot) = \max\{u_0(\cdot), u(1, \cdot + c; u_{c,n})\}.$$

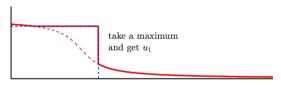


- ▶ si on ignore le max, cette suite dénote simplement la solution du problème de Cauchy aux temps entiers dans le repère mobile de vitesse c;
- l'ajout du max rend cette suite monotone (par principe de comparaison).

On note ici

la solution de $\partial_t u = \partial_x^2 u + f(u)$ avec $u(t = 0, \cdot) = g(\cdot)$.

$$u_{c,n+1}(\cdot) = \max\{u_0(\cdot), u(1, \cdot + c; u_{c,n})\}.$$



- ▶ si on ignore le max, cette suite dénote simplement la solution du problème de Cauchy aux temps entiers dans le repère mobile de vitesse c;
- l'ajout du max rend cette suite monotone (par principe de comparaison).

- A posteriori, la vitesse c_1^* d'un front connectant $1 > p_2$ est aussi la vitesse de propagation au sens où:
 - ▶ dans un repère mobile de vitesse $c < c_1^*$, la solution converge vers 1;
 - ightharpoonup dans un repère mobile de vitesse $c>c_1^*$, la solution est bornée par p_2 .
- A priori, on peut définir

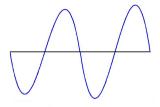
$$c_1^* := \max \left\{ c \mid \lim_{n o +\infty} u_{c,n} = 1
ight\}.$$

Après plusieurs extractions de limites bien choisies en $c \nearrow c^*$ et $n \to +\infty$, on construit effectivement un front U qui connecte $1 > p_2$.

▶ Par récurrence et un pas de temps tendant vers 0, on obtient une terrasse.
 L'hypothèse de stabilité linéaire permet de garantir que les vitesses sont ordonnées.

Forme de la terrasse selon la direction

▶ Quelle est la forme de la terrasse, par exemple lorsque $u \mapsto f(u)$ est du type:



Deux cas de figures selon comment les deux vitesses bistables sont ordonnées:

- ightharpoonup si $c_{upper} \leq c_{lower}$, alors on a une terrasse consistant en deux fronts;
- ▶ si $c_{upper} > c_{lower}$, alors on a une terrasse consistant en un seul front, dont la vitesse $c \in (c_{lower}, c_{upper})$.

Forme de la terrasse selon la direction

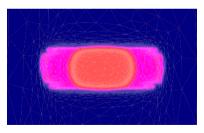
▶ <u>Théorème</u> [Ding-G]: Soit un nombre fini de directions $e_1, \dots, e_J \in \mathbb{Q}^N \cap S^{N-1}$, et des nombres réels $c_1, \dots, c_J \geq 0$.

Alors il existe une équation bistable périodique telle que pour tout $1 \le j \le J$:

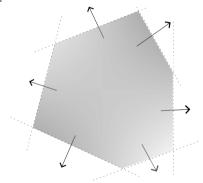
$$c^*(e_j)=c_j.$$

- En particulier:
 - ightharpoonup en dimension N=1, les vitesses dans les deux directions opposées sont indépendantes;
 - dans le cas multistable périodique en espace, la forme des terrasses peut varier selon la direction.

- Avec [G-Rossi] on trouve un exemple en dimension N = 2 où:
 - la terrasse a deux fronts dans la direction $e_1 = (1, 0)$;
 - ▶ mais un seul dans la direction $e_2 = (0, 1)$.
- Pour une donnée initiale à support compact, la forme de propagation ressemble à



► Notion de forme de Wulff:



▶ Théorème [G-Rossi]: Supposons que toutes les vitesses sont positives, et que la forme de la terrasse soit la même dans ttes les directions, i.e. les états intermédiaires $(p_k)_k$ ne dépendent pas de e.

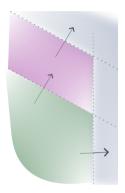
Alors la propagation entre deux états successifs (q_{k-1}, q_k) est donnée par la formule de Freidlin-Gartner/la forme de Wulff:

$$\mathcal{W}_k = \{x \mid \forall e \in S^{N-1}, \ x \cdot e \leq c_k(e)\}.$$

Plus précisément

$$\forall x \in \overset{\circ}{\mathcal{W}}_{k+1} \setminus \mathcal{W}_k, \quad \lim_{t \to +\infty} |u(t, tx) - q_k(tx)| = 0.$$

La difficulté dans le cas général:



Supposons 3 états stables 0 (gris), 1 (violet) et 2 (vert); la terrasse est constituée d'un front dans la direction horizontale et deux fronts dans la direction diagonale.

 On a aussi un résultat lorsque les formes de Wulff sont régulières, malheureusement, cette hypothèse non plus n'est pas toujours satisfaite.

Questions ouvertes:

- ► Comment décrire la forme de la propagation dans le cas périodique général?
- ▶ Peut-on étendre cette approche à des équations hétérogènes (ergodiques, etc.)?
- Peut-on étendre cette approche à des systèmes (compétitifs, proies-prédateurs, etc.) où la propagation en plusieurs étapes apparait naturellement?

Merci pour votre attention.