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Outline

e Two NEMD Frameworks

e Standard Fixed Forcing NEMD Framework (Thévenin Ensemble)

@ Fixed Response NEMD Framework (Norton Ensemble)

¢ Mean—Field Interacting Particle Systems
@ Setup and Standard Results
@ Norton Mean—Field System
@ Norton McKean—-Vlasov Dynamics
¢ Propagation of Chaos and Equivalence of Ensembles
@ Propagation of Chaos for the Norton Dynamics
@ Equivalence of Ensembles from Propagation of Chaos

¢ Extensions and perspectives
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(Non-)Equilibrium Molecular
Dynamics

Shiva Darshan (ENPC/Inria) Norton Propagation of Chaos Carcans, June 2025 3/26



Steady—State Out—of-Equilibrium Systems

An external forcing on/perturbation of an equilibrium system induces a
response

J (energy current) ——>»

Here we are interested in the steady—state/long—time behavior.
Keyword: Non—equilibrium steady state (NESS)
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Equilibrium Molecular Dynamics

Reference/Equilibrium dynamics on R”

dXy =b (X)) dt + \/Zth,

with (equilibrium) invariant probability measure vy.
Archetypal example: Overdamped Langevin dynamics
b(z) =—-VU(x), vo(dz) oc e U@ gy

Remark: Overdamped dynamics is reversible with respect to its
equilibrium measure.
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Non—Equilibrium Molecular Dynamics

Perturb the reference dynamics by some external field F
Example: Perturb overdamped dynamics,
b(z)=—-VU(x), vo(dz) oc e PV @) g,
with non—gradient external field F, i.e.
1V :RP SR, st. F=VV.

Dynamics no longer reversible with respect to its invariant probability
measure.

Question: Force with what magnitude?
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Fixed Forcing NEMD (Thévenin Ensemble)

Dynamics perturbed by forcing of fixed magnitude n € R

2
dX;' = (b(X)) +nF (X)) dt + \/;th,
with (non—equilibrium) invariant probability measure v,
For a given observable R : RP? — R, measure response r

Ey, [R(X{)] = vy(R) = r(n)

Idea:
Fixing Forcing Magnitude Measure Response
_—
n r(n) = vp(R)
Shiva Darshan (ENPC/Inria) Norton Propagation of Chaos Carcans, June 2025

7/26



Duality between n and r

One would expect a duality between the forcing magnitude and
response—each 7 (locally) corresponds to a specific response 7(n)

2.0

15

05 |

0.0

0.5

So we not fix the response 7
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Fixed Response NEMD (Norton Ensemble)

Given an observable R and external force field F'

Response fixed to € R by external forcing of variable magnitude:

2 .
dY; = b(Y7)dt + \@th + F (Y dA;

A" : R-valued semi martingale fixing R (Y;") = r

Idea: Measure the forcing necessary to fix the response

Fix Response Measure Response

r "E [dA}]”

D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran, and A.J.C. Ladd (1983) Nonequilibrium
molecular dynamics via Gauss's principle of least constraint.
N. Blassel and G. Stoltz (2024) Fixing the Flux: A Dual Approach to Computing Transport
Coefficients
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Fixed Response NEMD (Norton Ensemble)

F (Y/") dA} oblique projection onto ¥, = {z € RP: R(z) =r}
A" a Lagrange multiplier

ﬁF‘,VR(y)Ay“':_

From Blassel & Stoltz
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Equivalence of Fixed Response and Fixed Forcing NEMD?

Question: Are these two descriptions equivalent?
For fixed system and size, no!

Equivalence in some large particle limit like equilibrium equivalence of
ensembles?

Equivalence of NVT and NVE ensembles |

Local observable ¢ and conjugate inverse temperature 3 and energy E

<¢>C&HOH1C&1 ~ <¢>mlcrocanon1cal7 as N — 0

Physicists say yes, but with a proof a la physicienne®

What can we prove rigourously (in a model case)?

'D.J. Evans (1993) The equivalence of Norton and Thévenin ensembles
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Mean—Field Interacting Particle
Systems
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Thévenin Mean-Field Interacting Particle System

Consider a system of N d—dimensional mean—field interacting particles:

N Lo, N NN
X :(Xt" L XN ) ,
t=0

. . . 2 .
ax; ™ = (b (XY by (XN o) o (X70V)) a4 \/;dWZ
v 1o
=3 20

Make standard assumptions: Lipschitzness, F' bounded, by strongly
contractive (at infinity), small interactions (b; small), ...

Consider observables of form: integral of a R : RY — R wrt p"V

(0 8y [ o = S (5
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Thévenin McKean—Vlasov Dynamics
Under our assumptions, propagation of chaos (uniform in ¢t > 0 and 7) to
dX7 = (bo ()?f) + by ()”(;7,5;7) +F (Xf)) dt + \/gth
¢ = Law (f{f)
with invariant measure 7, and generator £, [u] = Lo[p] + nl

Lo [p] f = (bo(x) + by (z, 1) -V f(x)+ ;Af(x), Lf(x) = F(x)-Vf(x)

Standard consequences: Convergence of k—marginals of invariant measures
of mean—field system to %%, for ¢ : R? — R Lipschitz

AR EEXGNOY

etc.
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Norton Mean—Field Interacting Particle System

N d—dimensional mean—field interacting particles
yrN = (}Ql’r’N, . ,YtN’T’N) constrainted to

=

AR {90 € (Rd>N : JbiR(:ﬂi) = r}
de;mN _ (bo <Yti,r,N> + by <Yj,r,N7Q?N>) di + \/gthi
+F (YtN> dATN

1 N
rN _ ]
Qt = — Z 63/;”"]\7
=1

A™N  R-valued semi-martingale fixing d<g:’N, R> =0
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Norton Mean—Field Interacting Particle System

Assumption

o (Observable) R € C? (R?) and VR, V>R bounded
o (Controllability) There exists o > 0 such that

F(z)-VR(z)>a, VzeR?

o (Non—décollage) We have for any . € P, (]Rd)

|, 0@ +01 @.10) - VRG@(do)| < (1) + T

with v = 0 small enough.
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Norton Mean—Field Interacting Particle System

Making ansatz
¢
AN = J \Vds + AN
0

and using d<gfv, R> = 0 and assumptions, we find explicit expressions:

~ h QN
W= (a) = (o) +

T )\(M) - _</’L7£0[:U’]R>

()

avec h bornée et [/NXN,/N\N] =0 (%)

t
Proposition
Forp > 1, X is of linear growth on P, (R?) and "almost Lipschitz"

IA(p) —A(v)] < (L + Cppr (11, 1/)) Wy (n,v), Vu,veP, (Rd>

4
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Norton Mean—Field Interacting Particle System

dYtz‘,r,N _ (bo (Yti,r,N> 4 by (Yti,r,N7 Q:,N) LN <Q;,N) Ia (Ytz',r,N)) dt
+ \/gthi + F (vprN) akp N

1 N
N z : )
Qt = N (53/;,,7*,N
=1

Proposition |
Above dynamics is well-posed for any N € N*, i.e. unique strong solution.
With exchangeable initial conditions, we have uniform in N moment
bounds: for any N € N

oo B[] < (8,4 5) (e[l )
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Norton McKean—Vlasov Dynamics

Formal N — oo limit:

47, — (bg (Zt) + b (Z, Et) 4 (Et) F (Z)) dt + \/gth

Zt = Law (Zt)

Formally A ensures that <&,R> = <50,R> forallt =0
Does this dynamics even exist?: Due to non—Lipschitzness of A, Picard
iteration is not contractive!

Theorem
Strong existence and pathwise uniqueness hold for the above dynamics.

Idea of proof:> Moment estimates + Finding right subspace — Recover
contractivity = Apply Banach’s Fixed Point Theorem

2Compare to the weak existence and uniqueness of Gartner (1988) On the
McKean—Vlasov Limit for Interacting Diffusions
Shiva Darshan (ENPC/Inria) Norton Propagation of Chaos Carcans, June 2025 19 /26



Equivalence of Ensembles and
Propagation of Chaos
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Equivalence of Ensembles

Definition

Let 7. > 0 be such r : n — Dy (R) is invertible on [—n.,7.]. Equivalence
of the Thévenin and Norton ensembles holds if for any ¢ > 0,

n € [~nx, 4], and ¢ : R — R Lipschitz

(ot 6) = (g™, 6)| -0

in probability/LP. Uniform equivalence holds convergence is uniform in
t =0 and [—14, 4]

Compare this to the definition (implicitly) used by Evans:
For any extensive observable A

<A>Thévenin,N - <A>Norton7N = ON(]-)

*Evans (1993) The equivalence of Norton and Thévenin ensembles
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Three useful observations

0
<an Lo[Dy| R) <z 50

(D) = +n
(v, R /@ﬁ@
Consequence if Zo ~ Uy then (Z, () Law <X’7,§’7) started at 7).
For any ¢ : R - R

o™ 0y = (g™, 65| < [(ot™, 0) — &1 )
KCT(W ’¢> _ <Q§(n) N

where ¢"(" is the law of Z started at .
For any ¢ : R* - R Lipschitz

B[ 0) = (a0 | < ot B[ (6, 6)

Punchline: (Quantitative/uniform) PoC = (quantitative/uniform) EoE
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Qualitative Propagation of Chaos

It remains to show: If gév — Z(] as N — oo, for any t = 0 does
giv — (z, as N — o0?

Theorem

Propagation of chaos of mean—field Norton system towards
McKean—Vlasov Norton system holds.

Idea of proof.
@ Strong solution = uniqueness of martingale problem
@ Moment bounds = tightness

Standard tightness—uniqueness argument®

*See for example: Méléard (1996) Asymptotic Behaviour of some interacting particle
systems; McKean-Vlasov and Boltzmann models
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Quantitative Propagation of Chaos

Non—Lipschitzness of A makes using synchronous coupling a la
Sznitman®/Malrieu® difficult.

Solution: Stability estimates inspired by’
Proposition

Assume Zo has enough moments. There exists C' > 0 such that
Ve Py (Rd)

A (&) = rw)| < W (&)

Finite—time quantitative propagation of chaos now easy.

Reminder: p > 1

®Sznitman (1989) Topics in the propagation of chaos

®Malrieu (2001) Logarithmic Sobolev inequalities for some nonlinear PDE’s

"Gerber Hoffmann Vaes (2023) Mean-field limits for Consensus-Based Optimization
and Sampling
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Quantitative Propagation of Chaos

Under very strong (irrealistic) hypotheses (global strong contractivity, very
weak interactions, assumptions on R and F, ...), uniform propagation of
chaos is provable!

Theorem |

Under very strong assumptions and assuming Qév — 50 fast enough,
uniform in time propagation of chaos holds: for any n = p

supE [ W (&, olY) | < o= mintt/2/d)

t=0

A is "almost Lipschitz” only for p > 1 is a technical obstacle to using
reflection coupling 2 la Eberle®

8Durmus Eberle Guillin Zimmer An elementary approach to uniform in time
propagation of chaos
Shiva Darshan (ENPC/Inria) Norton Propagation of Chaos Carcans, June 2025 25/26



Some Extensions and Perspectives

@ Many interesting objects worth studying in Norton dynamics
o Norton McKean—Vlasov dynamics: Non—linear Markov process with an
oblique constraint on law

2= (10 (2) 400 (28) + 3 (0) £ (2) ) e+ S

o Fluctuations? PoC does not see Martingale /N\N, but fluctuations do
@ Current hypotheses are very strong (unrealistic)

o Extension to irregular coefficients to weaken controlability assumption

o Reflection coupling to weaken global contractivity

o Other models: kinetic Langevin (on torus). Atom chains?

e Non-linear dynamics with multiple invariant measures and "local

uniform PoC".

@ Original motivation: Computing transport coefficients

o Performance of estimator:

r N, T—00,r—0

Y (QQ’N) dt
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An idea to make reflection coupling work

Inspired by? we could study the invariant measures of a one-dimensional
sticky non—linear SDE:

2
dry = (/1,,* (re)re + Ly oE [rf] /P) dt + 2\/;1{Tt>0}dBt

do is an invariant measure of the above dynamics. When is it the only
one? Exponential ergodicity?

Bounding process ’ZZW B Ytz,r,N’ < ri";’N,
N 1/p
A A ‘ A )
dry™N = | #y, (r,ﬁ"s’N) N <Z (ﬁ&N) ) gt

+2\[¢m o,V dB;'

°Durmus Eberle Guillin Schuh (2022) Sticky non-linear SDEs and convergence of

McKean—-Vlasov without confinement
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An idea about the Fluctuations

S VR (YY) aw,
\/7J <QN £R>
Naive formal limit

\F; (y3wi- [ ema,)
- \/>f Rd Wis,a)do - e <Cs,/JR>S el o

with W a space—time white noise.

Fluctuations also obliquely constrained?
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Norton kinetic Langevin on torus

LN _1,N N,N N,N N
(CIt Dy 554y 2 )E(TdXRd)
dgp™ = ppdt

N
i i 1 i j i
e (VU(qt’N) + v LYW (q;N - qi’N>> dt — ypp™ dt
1=1
2 : , 4
+ «/%dWZ +F (Qi’N,pi’N> A

The homologue of A is W Lipschitz!

Mobility R(q,p) = u"p with v e S~! and F(q,p) = F € S%! trivial
satisfies controlability assumption if v - F' # 0.

Noé's class of observables work well to R(q,p) = G(q) - p with
G:R?Y - R?
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