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Low-Mach number limit problem

We are interested in the simulation of Euler barotropic equations, defined in
Ω ⊂ Rd × [0,T ]:  ∂t̃ ρ̃+∇x̃ · (ρ̃ũ) = 0

∂t̃ (ρ̃ũ) +∇x̃ · (ρ̃ũ⊗ ũ) +
∇x̃ p̃
γM2 = 0

(1)

with
� ρ is the density

� equation of state p = f (ρ), p is the pressure

� u is the the velocity

� Let x0 characteristic length, t0 its characteristic time, ρ0 characteristic density. u0 = x0/t0
characteristic speed c2

0 = p′(ρ0) characteristic sound velocity . The Mach number M :=
u0

c0
. (with

γ = p̃′(1)):

=⇒ Singular limit
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From the low Mach limit to long time limit of a wave system

A two scale asymptotic expansion, let
� τ = t̃/M acoustic time scale.

� Asymptotic expansion in Mach number M:
ϕ(x , t, τ,M) = ϕ(x , t, τ)(0) + Mϕ(x , t, τ)(1) + M2ϕ(x , t, τ)(2) +O(M3).

We obtain ([JP22], [Mül98]): ∂τ ρ̃
(1) +∇ · (ρ̃(0)ũ(0)) = − d

dt̃
ρ̃(0)

∂τ (ρ̃(0)ũ(0)) + c̃2(ρ̃(0))∇ρ̃(1) = 0
(2)

→ Low Mach number limit encapsulated in the behaviour of this wave system when

τ :=
t̃
M
→ +∞
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Preservation of structures

Our problem boils down to understanding the long time limit of the wave system : ∂τp +
1
ρ

divu = 0

∂τu + κ∇p = 0

At the continuous level :
� ∂τ (∇⊥ · u) = 0 in 2d with ∇⊥ · u = ∂y ux − ∂x uy

� if boundary conditions, preservation of

∂τu∞ = 0, div(u∞) = 0, u∞ · n|∂Ω = ub · n|∂Ω
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Collocated schemes
ρ, u at the center of the cell
Dependency on the mesh (see [DOR10] [Rie08] [Del10], [GN17])

� Godunov scheme : solving the Riemann problem at each interface introduces spurious acoustic
waves even for data close to incompressible [GM04]

� Godunov scheme triangles o.k but in quads : discrete divergence free velocity space is too small
([Del10][DOR10][Rie08])

ux (y)

uy (x)

� Correction leads to centering the pressure gradient =⇒ p̃i+1 − p̃i−1

γ∆x
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The classical staggered scheme

ux

uy

ρ

MAC first introduced for incompressible flows by [Har65]. Staggered scheme seems to
preserve continuous structures at the discrete level such as :
de Rham complexes, sequences of the type

{0} id−→ H1(Ω)
∇⊥−−→ H(div ; Ω)

div−−→ L2(Ω)
0−→ 0

but discrete.
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Staggered scheme and de Rham complexes

Discrete de Rham complex of "Nédélec-Raviart-Thomas" ([EG04],[Arn18])

{0} id−→ cQ1(Ω)
∇−→
⊥
RT1(Ω)

∇·−→ dQ0(Ω)
0−→ 0

Important byproducts of de Rham complexes are :
� Rigourous definition of the differential operators for each space : Discrete grad, div duality, for some

scalar product (p, divu) = −(∇hp,u) and (∇⊥φ,u) := (φ, (∇⊥·)hu)

� Hodge decomposition

uh = uΨ + uϕ div(uΨ) = 0, rot(uϕ) = 0,
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Starting the other way around : from the wave system to Euler

Our "algorithm" to obtain low Mach number scheme :
1) Formally, low Mach number behaviour ≈ long time limit of following wave system : ∂τp +

1
ρ

divu = 0

∂τu + κ∇p = 0

2) "Good formalism" : discrete de Rham complex of "Nédélec-Raviart-Thomas"

{0} id−→ cQ1(Ω)
∇−→
⊥
RT1(Ω)

∇·−−→ dQ0(Ω)
0−→ 0
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From FE to FV: the numerical scheme
Using a mass-lumping:

a(u,Ψσ) =

∫
Ω

u ·Ψσdx is replaced by ah(u,Ψσ) := uσ
∑
f⊂F

∫
Ω

Ψf ·Ψσdx .

Finite Volume formulation :
|K |∂τpK +

1
ρ

∑
σ⊂∂K

|σ|εK (σ)uσ =
c
2

∑
σ⊂∂K

|σ|[[ p ]]σ

|Dσ|∂τuσ + κ|σ|[[ p ]]σ =
c
2
|σ|[[ d̃ivu ]]σ

where
� |K | primal volume, |Dσ| dual volume associated to a face σ, |σ| length of the face

� [[ q ]]σ := qK − qL, (d̃ivu)K :=
1
|∂K |

∑
σ⊂∂K

|σ|εK (σ)uσ
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Grad-div stabilization
We need stabilization because we want an explicit time integration. Recall :

{0} id−→ cQ1(Ω)
∇−→
⊥
RT1(Ω)

∇·−→ dQ0(Ω)
0−→ 0

Since for Φ ∈ cQ1(Ω) we have ∇⊥Φ ∈ RT1(Ω) : we can define

〈(∇⊥)∗u,Φ〉 := 〈u,∇⊥Φ〉

taking ∇⊥Φ as test function

〈∂τ (∇⊥)∗u,Φ〉 = 0 since ∇(div(∇⊥Φ)) = 0

=⇒ Preservation of (∇⊥)∗u (≈ ∇⊥ · u).
Formally ∆u = ∇div(u) +∇⊥(∇⊥ · u) −→ kill ∇⊥(∇⊥ · u)
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Long time limit in the general case
In the general case with boundary conditions. The system preserves

∂τu∞ = 0, div(u∞) = 0, u∞ · n|∂Ω = ub · n|∂Ω

Theorem (Hodge-Decomposition with boundary conditions)

Let Ω ⊂ Rd , d ∈ {2, 3} an open set u0,ub ∈ RT1(Ω) such that∫
∂Ω ub · ndΓ = 0.Then : u0 = (u0)ϕ + (u0)Ψwith

div(u0)Ψ = 0, (u0)Ψ · n|∂Ω = ub · n|∂Ω

This comes "naturally" from the use of complexes

Theorem (Convergence in long time)

Convergence in infinity to p∞ = pb and u∞ = (u0)Ψ ∈ RT1(Ω) so div(u∞h ) = 0 ,
u∞ · n|∂Ω = ub · n|∂Ω
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Intermediary takeways

StaggeredComplexes↔ StaggeredLong time limit τ := t̃
M → +∞

Grad-div stab : ∇(div(∇⊥ · u)) = 0 =⇒ ∂τ (∇⊥ · u)

Hodge : (u0)Ψ with (u0)Ψ · n|∂Ω = ub · n|∂Ω

Low Mach limit M→ 0

=⇒ class of schemes Low Mach number accurate
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Discretization of Euler barotropic equations in Ω

In staggered framework, mixed variables appear such as momentum : ρu
 Convection operator is approximated in DG fashion : here [[ q · n ]]σ = 0

|K |∂tρK +
∑
σ⊂∂K

|σ|εK (σ)qσ =
∑
σ⊂∂K

|uσ|+ c
2

[[ ρ ]]σ

|Dσ|∂tqσ +
∑

K⊂M

(
−
∫

K

q⊗ q
ρ

: ∇Ψσ +

∫
∂K

q · n q̂
ρ
·ΨσdΓ

)
+ |σ|[[ p ]] =

‖u‖∞ + c
2

|σ|[[ d̃iv(q) ]]σ

(3)

with
q̂
ρ

=
{
{q
ρ
}
}

: centered flux (no dependency with acoustic scale so only grad-div

and pressure gradient appears in the asymptotic)
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Conservation

The scheme is conservative in the sense that : for a fixed σ ⊂ F∫
f
q · nK ,f

q̂
ρ
·ΨσdΓ = −

∫
f
q · nL,f

q̂
ρ
·ΨσdΓ

∫
K

q⊗ q
ρ

: ∇(Ψσ)dx =

∫
K

q⊗ q
ρ

: ∇(
∑
f 6=σ

αf Ψf )dx = 0

for some αf ∈ R
 The contribution of a face f ⊂ ∂Kσ is identical to all faces in ∂Kσ. This is true
because

For any K ⊂M, ∃(αi)1≤i≤4 such that
(

1
1

)
=
∑

f⊂∂K

αf Ψf in K
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Numerical results: Conservativity

C++ code Solverlab ncells = 500

Figure 1: Explicit 1D: pL = 1156, pR = 1 Figure 2: Implicit 1D: pL = 484, pR = 1
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Numerical results : Cylinder Scattering I

u0 = (0, 0)t ub = (Mc(ρb), 0)t with ρ0 = ρb = 2, Imposed boundary conditions on the
outside circle (we impose ρb,ub), wall on the inside circle of the domain. nr = 5,

nθ = 16, δtexp :=
1
2

min|K |
max |∂K |(‖un‖∞ + cn))

Figure 3: Explicit
M = 1e − 1

Figure 4: Explicit
M = 1e − 2

Figure 5: Explicit
M = 1e − 3

Exact solution u∞ := Mc(ρb)(u0)Ψ
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Numerical results : Cylinder Scattering II

nr = 10, nθ = 32

Figure 6: Semi-Implicit
M = 1e − 4

Figure 7: Exact solution
M = 1e − 4 Figure 8: Roe Scheme

M = 1e − 4
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Conclusions and perspectives

Main takeways
i) Low Mach number behaviour : if discretization verifies

� Hodge-Helmoltz decomposition
� wave consistency
� stationary preserving diffusion

Then ≈ low Mach number accurate. We infer from our analysis that using staggered schemes does
not imply automatically the precision at Low Mach number (non-classical grad div stabilization to get
both dissipation and preservation of stationary states)

ii) Conservation
� Volume/finite Element setting to define momentum at the faces
� Conservation defined in the sense that

∑
f⊂∂K ∇Ψf = 0

What’s next ? → Extension to full Euler

Questions?
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