

Staggered conservative scheme for the simulation of low Mach number flows

SMAI 2025

5th June 2025

Esteban Coiffier (esteban.coiffier@cea.fr), Vincent Perrier, Jonathan Jung, Michael Ndjinga CEA SACLAY DES/ISAS/DM2S/STMF/

What about the discrete case

Constructing a low Mach number scheme

Addressing the convection and conservation issue

Numerical Results

Conclusions

What about the discrete case

Constructing a low Mach number scheme

Addressing the convection and conservation issue

Numerical Results

Conclusions

Low-Mach number limit problem

We are interested in the simulation of Euler barotropic equations, defined in $\Omega \subset \mathbb{R}^d \times [0, T]$:

$$\partial_{\tilde{t}}\tilde{\rho} + \nabla_{\tilde{x}} \cdot (\tilde{\rho}\tilde{\mathbf{u}}) = 0$$

$$\partial_{\tilde{t}}(\tilde{\rho}\tilde{\mathbf{u}}) + \nabla_{\tilde{x}} \cdot (\tilde{\rho}\tilde{\mathbf{u}} \otimes \tilde{\mathbf{u}}) + \frac{\nabla_{\tilde{x}}\tilde{\rho}}{\gamma \mathbf{M}^{2}} = 0$$
(1)

with

- ρ is the density
- equation of state $p = f(\rho)$, p is the pressure
- u is the the velocity
- Let x_0 characteristic length, t_0 its characteristic time, ρ_0 characteristic density. $u_0 = x_0/t_0$ characteristic speed $c_0^2 = \rho'(\rho_0)$ characteristic sound velocity. The Mach number $\mathbf{M} := \frac{u_0}{c_0}$. (with $\gamma = \tilde{p}'(1)$):
- \implies Singular limit

From the low Mach limit to long time limit of a wave system

A two scale asymptotic expansion, let

- $\tau = \tilde{t} / \mathbf{M}$ acoustic time scale.
- Asymptotic expansion in Mach number **M**: $\varphi(x, t, \tau, \mathbf{M}) = \varphi(x, t, \tau)^{(0)} + \mathbf{M}\varphi(x, t, \tau)^{(1)} + \mathbf{M}^2\varphi(x, t, \tau)^{(2)} + \mathcal{O}(\mathbf{M}^3).$

We obtain ([JP22], [Mül98]):

$$\begin{cases} \partial_{\tau} \tilde{\rho}^{(1)} + \nabla \cdot (\tilde{\rho}^{(0)} \tilde{\mathbf{u}}^{(0)}) = -\frac{d}{d\tilde{t}} \tilde{\rho}^{(0)} \\ \partial_{\tau} (\tilde{\rho}^{(0)} \tilde{\mathbf{u}}^{(0)}) + \tilde{c}^{2} (\tilde{\rho}^{(0)}) \nabla \tilde{\rho}^{(1)} = 0 \end{cases}$$
(2)

 \rightarrow Low Mach number limit encapsulated in the behaviour of this wave system when

$$\tau := \frac{\tilde{t}}{\mathsf{M}} \to +\infty$$

Preservation of structures

Our problem boils down to understanding the long time limit of the wave system :

$$\left\{ egin{array}{l} \partial_{ au}m{p}+rac{1}{
ho} divm{u}=m{0}\ \partial_{ au}m{u}+\kappa
ablam{p}=m{0} \end{array}
ight.$$

At the continuous level :

•
$$\partial_{\tau} (\nabla^{\perp} \cdot \mathbf{u}) = 0$$
 in 2d with $\nabla^{\perp} \cdot \mathbf{u} = \partial_{y} \mathbf{u}^{x} - \partial_{x} \mathbf{u}^{y}$

if boundary conditions, preservation of

$$\partial_{\tau} \mathbf{u}^{\infty} = \mathbf{0}, \quad div(\mathbf{u}^{\infty}) = \mathbf{0}, \quad \mathbf{u}^{\infty} \cdot \mathbf{n}_{|\partial\Omega} = \mathbf{u}_{b} \cdot \mathbf{n}_{|\partial\Omega}$$

What about the discrete case

Constructing a low Mach number scheme

Addressing the convection and conservation issue

Numerical Results

Conclusions

7

Collocated schemes

 $\rho,$ **u** at the center of the cell Dependency on the mesh (see [DOR10] [Rie08] [Del10], [GN17])

- Godunov scheme : solving the Riemann problem at each interface introduces spurious acoustic waves even for data close to incompressible [GM04]
- Godunov scheme triangles o.k but in quads : discrete divergence free velocity space is too small ([Del10][DOR10][Rie08])

The classical staggered scheme

MAC first introduced for incompressible flows by [Har65]. Staggered scheme seems to preserve continuous structures at the discrete level such as : de Rham complexes, sequences of the type

$$\{0\} \xrightarrow{id} H^1(\Omega) \xrightarrow{
abla^\perp} H(\mathit{div};\Omega) \xrightarrow{\mathit{div}} L^2(\Omega) \xrightarrow{0} 0$$

but discrete.

Staggered scheme and de Rham complexes

Discrete de Rham complex of "Nédélec-Raviart-Thomas" ([EG04],[Arn18])

$$\{0\} \xrightarrow{id} c\mathbb{Q}^{1}(\Omega) \xrightarrow{\nabla}^{\perp} \mathbb{R}\mathbb{T}^{1}(\Omega) \xrightarrow{\nabla}^{\cdot} d\mathbb{Q}^{0}(\Omega) \xrightarrow{0} 0$$

Important byproducts of de Rham complexes are :

- Rigourous definition of the differential operators for each space : Discrete grad, div duality, for some scalar product (*p*, *div***u**) = −(∇_{*h*}*p*, **u**) and (∇[⊥] φ, **u**) := (φ, (∇[⊥] ·)_{*h*}**u**)
- Hodge decomposition

$$\mathbf{u}_h = \mathbf{u}_{\Psi} + \mathbf{u}_{\varphi}$$
 div $(\mathbf{u}_{\Psi}) = 0$, rot $(\mathbf{u}_{\varphi}) = 0$,

What about the discrete case

Constructing a low Mach number scheme

Addressing the convection and conservation issue

Numerical Results

Conclusions

Starting the other way around : from the wave system to Euler

Our "algorithm" to obtain low Mach number scheme :

1) Formally, low Mach number behaviour \approx long time limit of following wave system :

$$\partial_ au oldsymbol{
ho} + rac{1}{
ho} di oldsymbol{v} oldsymbol{u} = oldsymbol{0} \ \partial_ au oldsymbol{u} + \kappa
abla oldsymbol{
ho} = oldsymbol{0}$$

2) "Good formalism" : discrete de Rham complex of "Nédélec-Raviart-Thomas"

$$\{0\} \xrightarrow{id} c\mathbb{Q}^{1}(\Omega) \xrightarrow{\nabla} \mathbb{R}\mathbb{T}^{1}(\Omega) \xrightarrow{\nabla} d\mathbb{Q}^{0}(\Omega) \xrightarrow{0} 0$$

From FE to FV: the numerical scheme

Using a **mass-lumping**:

$$a(\mathbf{u}, \Psi_{\sigma}) = \int_{\Omega} \mathbf{u} \cdot \Psi_{\sigma} dx$$
 is replaced by $a_h(\mathbf{u}, \Psi_{\sigma}) := \mathbf{u}_{\sigma} \sum_{f \in \mathcal{F}} \int_{\Omega} \Psi_f \cdot \Psi_{\sigma} dx.$

Finite Volume formulation :

$$\begin{cases} |K|\partial_{\tau}p_{K} + \frac{1}{\rho}\sum_{\sigma \subset \partial K} |\sigma|\varepsilon_{K}(\sigma)\mathbf{u}_{\sigma} = \frac{c}{2}\sum_{\sigma \subset \partial K} |\sigma|\llbracket p \rrbracket_{\sigma} \\ |D_{\sigma}|\partial_{\tau}\mathbf{u}_{\sigma} + \kappa|\sigma|\llbracket p \rrbracket_{\sigma} = \frac{c}{2}|\sigma|\llbracket \widetilde{\operatorname{divu}} \rrbracket_{\sigma} \end{cases}$$

where

I |K| primal volume, $|D_{\sigma}|$ dual volume associated to a face σ , $|\sigma|$ length of the face

Grad-div stabilization

We need stabilization because we want an explicit time integration. Recall :

$$\{0\} \xrightarrow{id} c \mathbb{Q}^{1}(\Omega) \xrightarrow{\nabla}^{\perp} \mathbb{R}\mathbb{T}^{1}(\Omega) \xrightarrow{\nabla}^{\cdot} d \mathbb{Q}^{0}(\Omega) \xrightarrow{0} 0$$

Since for $\Phi \in c\mathbb{Q}^1(\Omega)$ we have $\nabla^{\perp}\Phi \in \mathbb{RT}^1(\Omega)$: we can define $\langle (\nabla^{\perp})^* \mathbf{u}, \Phi \rangle := \langle \mathbf{u}, \nabla^{\perp}\Phi \rangle$

taking $\nabla^{\perp} \Phi$ as test function

 $\begin{array}{l} \langle \partial_{\tau} (\nabla^{\perp})^* \mathbf{u}, \Phi \rangle = \mathbf{0} \quad \text{since} \quad \nabla (\textit{div} (\nabla^{\perp} \Phi)) = \mathbf{0} \\ & \Longrightarrow \text{ Preservation of } (\nabla^{\perp})^* \mathbf{u} \ (\approx \nabla^{\perp} \cdot \mathbf{u}). \\ \text{Formally } \Delta \mathbf{u} = \nabla \textit{div}(\mathbf{u}) + \nabla^{\perp} (\nabla^{\perp} \cdot \mathbf{u}) \longrightarrow \text{kill } \nabla^{\perp} (\nabla^{\perp} \cdot \mathbf{u}) \end{array}$

Long time limit in the general case

In the general case with boundary conditions. The system preserves

$$\partial_{\tau} \mathbf{u}^{\infty} = \mathbf{0}, \quad \textit{div}(\mathbf{u}^{\infty}) = \mathbf{0}, \quad \mathbf{u}^{\infty} \cdot \mathbf{n}_{|\partial\Omega} = \mathbf{u}_b \cdot \mathbf{n}_{|\partial\Omega}$$

Theorem (Hodge-Decomposition with boundary conditions)

Let
$$\Omega \subset \mathbb{R}^d$$
 , $d \in \{2,3\}$ an open set $u_0, u_b \in \mathbb{RT}^1(\Omega)$ such that $\int_{\partial\Omega} u_b \cdot n d\Gamma = 0$. Then : $u_0 = (u_0)_{\varphi} + (u_0)_{\Psi}$ with

$$div(u_0)_{\Psi} = 0, \quad (u_0)_{\Psi} \cdot n_{|\partial\Omega} = u_b \cdot n_{|\partial\Omega}$$

This comes "naturally" from the use of complexes

Theorem (Convergence in long time)

Convergence in infinity to $p^{\infty} = p_b$ and $\boldsymbol{u}^{\infty} = (\boldsymbol{u}_0)_{\Psi} \in \mathbb{RT}^1(\Omega)$ so $div(\boldsymbol{u}_h^{\infty}) = 0$, $\boldsymbol{u}^{\infty} \cdot \boldsymbol{n}_{|\partial\Omega} = \boldsymbol{u}_b \cdot \boldsymbol{n}_{|\partial\Omega}$

Intermediary takeways

 \Rightarrow class of schemes Low Mach number accurate

Low-Mach number staggered schemes - Esteban Coiffier

What about the discrete case

Constructing a low Mach number scheme

Addressing the convection and conservation issue

Numerical Results

Conclusions

Discretization of Euler barotropic equations in Ω

In staggered framework, mixed variables appear such as momentum : $\rho \mathbf{u} \sim Onvection operator is approximated in DG fashion : here <math>[\![\mathbf{q} \cdot \mathbf{n}]\!]_{\sigma} = 0$

$$\begin{bmatrix}
|K|\partial_t \rho_K + \sum_{\sigma \subset \partial K} |\sigma| \varepsilon_K(\sigma) \boldsymbol{q}_{\sigma} = \sum_{\sigma \subset \partial K} \frac{|\mathbf{u}_{\sigma}| + c}{2} \llbracket \rho \rrbracket_{\sigma} \\
|D_{\sigma}|\partial_t \boldsymbol{q}_{\sigma} + \sum_{K \subset \mathcal{M}} \left(-\int_K \frac{\boldsymbol{q} \otimes \boldsymbol{q}}{\rho} : \nabla \Psi_{\sigma} + \int_{\partial K} \boldsymbol{q} \cdot \mathbf{n} \frac{\widehat{\boldsymbol{q}}}{\rho} \cdot \Psi_{\sigma} d\Gamma \right) + |\sigma| \llbracket \rho \rrbracket = \quad (3)$$

$$\frac{\|\mathbf{u}\|_{\infty} + c}{2} |\sigma| \llbracket \widetilde{\operatorname{div}(\boldsymbol{q})} \rrbracket_{\sigma}$$

with $\frac{\widehat{\mathbf{q}}}{\rho} = \{\{\frac{\mathbf{q}}{\rho}\}\}$: centered flux (no dependency with acoustic scale so only grad-div and pressure gradient appears in the asymptotic)

Conservation

The scheme is conservative in the sense that : for a fixed $\sigma \subset \mathcal{F}$

$$\int_{f} \boldsymbol{q} \cdot \mathbf{n}_{K,f} \frac{\widehat{\boldsymbol{q}}}{\rho} \cdot \Psi_{\sigma} d\Gamma = -\int_{f} \boldsymbol{q} \cdot \mathbf{n}_{L,f} \frac{\widehat{\boldsymbol{q}}}{\rho} \cdot \Psi_{\sigma} d\Gamma$$
$$\int_{K} \frac{\boldsymbol{q} \otimes \boldsymbol{q}}{\rho} : \nabla(\Psi_{\sigma}) dx = \int_{K} \frac{\boldsymbol{q} \otimes \boldsymbol{q}}{\rho} : \nabla(\sum_{f \neq \sigma} \alpha_{f} \Psi_{f}) dx = 0$$

for some $\alpha_f \in \mathbb{R}$

 \rightsquigarrow The contribution of a face $f \subset \partial K_{\sigma}$ is identical to all faces in ∂K_{σ} . This is true because

For any
$$K \subset \mathcal{M}$$
, $\exists (\alpha_i)_{1 \leq i \leq 4}$ such that $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \sum_{f \subset \partial K} \alpha_f \Psi_f$ in K

What about the discrete case

Constructing a low Mach number scheme

Addressing the convection and conservation issue

Numerical Results

Conclusions

Numerical results: Conservativity

C++ code Solverlab ncells = 500

Figure 1: Explicit 1D: $p_L = 1156$, $p_R = 1$

Figure 2: Implicit 1D: $p_L = 484$, $p_R = 1$

W WY

Numerical results : Cylinder Scattering I

 $\mathbf{u}_{0} = (0,0)^{t} \mathbf{u}_{b} = (Mc(\rho_{b}),0)^{t} \text{ with } \rho_{0} = \rho_{b} = 2, \text{ Imposed boundary conditions on the outside circle (we impose <math>\rho_{b}, \mathbf{u}_{b}$), wall on the inside circle of the domain. $n_{r} = 5$, $n_{\theta} = 16, \, \delta t_{exp} := \frac{1}{2} \frac{min|K|}{max|\partial K|(||\mathbf{u}^{n}||_{\infty} + c^{n}))}$

Figure 5: Explicit M = 1e - 3

Figure 3: Explicit M = 1e - 1

Figure 4: Explicit M = 1e - 2

Exact solution $\mathbf{u}^{\infty} := Mc(\rho_b)(\mathbf{u}_0)_{\Psi}$

Numerical results : Cylinder Scattering II

 $n_r = 10, n_\theta = 32$

Figure 6: Semi-Implicit M = 1e - 4

Figure 7: Exact solution M = 1e - 4

Figure 8: Roe Scheme M = 1e - 4

What about the discrete case

Constructing a low Mach number scheme

Addressing the convection and conservation issue

Numerical Results

Conclusions

Conclusions and perspectives

Main takeways

- i) Low Mach number behaviour : if discretization verifies
 - Hodge-Helmoltz decomposition
 - wave consistency
 - stationary preserving diffusion

Then \approx low Mach number accurate. We infer from our analysis that using staggered schemes does not imply automatically the precision at Low Mach number (non-classical grad div stabilization to get both dissipation and preservation of stationary states)

- ii) Conservation
 - Volume/finite Element setting to define momentum at the faces
 - Conservation defined in the sense that $\sum_{f \subset \partial K} \nabla \Psi_f = 0$

What's next ? \rightarrow Extension to full Euler

Conclusions and perspectives

Main takeways

- i) Low Mach number behaviour : if discretization verifies
 - Hodge-Helmoltz decomposition
 - wave consistency
 - stationary preserving diffusion

Then \approx low Mach number accurate. We infer from our analysis that using staggered schemes does not imply automatically the precision at Low Mach number (non-classical grad div stabilization to get both dissipation and preservation of stationary states)

ii) Conservation

- Volume/finite Element setting to define momentum at the faces
- Conservation defined in the sense that $\sum_{f \subset \partial K} \nabla \Psi_f = 0$

What's next ? \rightarrow Extension to full Euler

Questions?

Douglas N Arnold.

Finite element exterior calculus. SIAM, 2018.

- Aubin Brunel, Raphaèle Herbin, and Jean-Claude Latché.
 A staggered scheme for the compressible euler equations on general 3d meshes. arXiv preprint arXiv:2209.06474, 2022.
- Amy L Bauer, Raphaël Loubere, and Burton Wendroff. On stability of staggered schemes. *SIAM Journal on Numerical Analysis*, 46(2):996–1011, 2008.
- STÉPHANE Dellacherie.

Checkerboard modes and wave equation.

In Proceedings of ALGORITMY, volume 2009, pages 71-80, 2009.

Stéphane Dellacherie.

Analysis of godunov type schemes applied to the compressible euler system at low mach number.

Journal of Computational Physics, 229(4):978–1016, 2010.

Stéphane Dellacherie, Pascal Omnes, and Felix Rieper.

The influence of cell geometry on the godunov scheme applied to the linear wave equation.

Journal of Computational Physics, 229(14):5315–5338, 2010.

Daniele A Di Pietro and Jérôme Droniou.

An arbitrary-order discrete de rham complex on polyhedral meshes: Exactness, poincaré inequalities, and consistency.

Foundations of Computational Mathematics, 23(1):85–164, 2023.

- Daniele A Di Pietro, Jérôme Droniou, and Silvano Pitassi.
 Cohomology of the discrete de rham complex on domains of general topology. *Calcolo*, 60(2):1–25, 2023.
- Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume 159. Springer, 2004.
- Dionysis Grapsas, Raphaèle Herbin, Walid Kheriji, and Jean-Claude Latché.

An unconditionally stable staggered pressure correction scheme for the compressible navier-stokes equations.

The SMAI journal of computational mathematics, 2:51–97, 2016.

Hervé Guillard and Angelo Murrone.

On the behavior of upwind schemes in the low mach number limit: li. godunov type schemes.

Computers & fluids, 33(4):655-675, 2004.

Hervé Guillard and B Nkonga.

On the behaviour of upwind schemes in the low mach number limit: A review. *Handbook of Numerical Analysis*, 18:203–231, 2017.

Emmanuel Grenier.

Oscillatory perturbations of the navier stokes equations. Journal de Mathématiques Pures et Appliquées, 76(6):477–498, 1997.

Hervé Guillard.

On the behavior of upwind schemes in the low mach number limit. iv: P0 approximation on triangular and tetrahedral cells.

Computers & fluids, 38(10):1969–1972, 2009.

Hervé Guillard and Cécile Viozat.

On the behaviour of upwind schemes in the low mach number limit.

Computers & fluids, 28(1):63-86, 1999.

Francis H Harlow.

Mac numerical calculation of time-dependent viscous incompressible flow of fluid with free surface.

Phys. Fluid, 8:12, 1965.

Raphaele Herbin, Walid Kheriji, and J-C Latché.

On some implicit and semi-implicit staggered schemes for the shallow water and euler equations.

ESAIM: Mathematical Modelling and Numerical Analysis, 48(6):1807–1857, 2014.

Raphaele Herbin, Jean-Claude Latché, and Trung Tan Nguyen.

Consistent explicit staggered schemes for compressible flows part i: the barotropic euler equations.

2013.

Raphaele Herbin, Jean-Claude Latché, and Trung Tan Nguyen.

Consistent explicit staggered schemes for compressible flows part ii: the euler equation.

2013.

Raphaèle Herbin, J-C Latché, and Khaled Saleh.

Low mach number limit of some staggered schemes for compressible barotropic flows.

Mathematics of Computation, 90(329):1039–1087, 2021.

Jonathan Jung and Vincent Perrier.

Steady low mach number flows: identification of the spurious mode and filtering method.

Journal of Computational Physics, 468:111462, 2022.

Sergiu Klainerman and Andrew Majda.

Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids.

Communications on pure and applied Mathematics, 34(4):481–524, 1981.

Bernhard Müller.

Low-mach-number asymptotics of the navier-stokes equations.

Floating, Flowing, Flying: Pieter J. Zandbergen's Life as Innovator, Inspirator and Instigator in Numerical Fluid Dynamics, pages 97–109, 1998.

Roy A Nicolaides.

Direct discretization of planar div-curl problems.

SIAM Journal on Numerical Analysis, 29(1):32–56, 1992.

Felix Rieper.

Influence of cell geometry on the behaviour of the first-order roe scheme in the low mach number regime.

Finite Volumes for Complex Applications V, pages 625–632, 2008.

Steven Schochet.

Fast singular limits of hyperbolic pdes.

Journal of differential equations, 114(2):476-512, 1994.

V Selmin and Luca Formaggia.

Unified construction of finite element and finite volume discretizations for compressible flows.

International Journal for Numerical Methods in Engineering, 39(1):1–32, 1996.