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Generative Modeling

GAN

Diffusion models

x ̂x

Objective:  Given samples , draw new samples from . x1, …, xn ∼ ρ ρ

Current solutions:  Sample a noise  (e.g. Gaussian)     Learn a transport map  such that z ϕ ϕ(z) ∼ ρ

VAE

[1] Drawings from Yang Song blog: https://yang-song.net/blog/2021/score/
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Generative Modeling

GAN

Diffusion models

x ̂x

Objective:  Given samples , draw new samples from . x1, …, xn ∼ ρ ρ

Current solutions:  Sample a noise  (e.g. Gaussian)     Learn a transport map  such that z ϕ ϕ(z) ∼ ρ

VAE[1] 

[1] 

Question:  Can we tie Sampling and Transport ? 
[1] Drawings from Yang Song blog: https://yang-song.net/blog/2021/score/



Given a probability measure  that admits a first moment, whose barycenter is 0, and which is not 
supported on a hyperplane, there exists a convex function  such that:                                                             

ρ
u : ℝd → ℝ

Moment measures

Moment measures factorization Theorem

[1]  Dario Cordero-Erausquin and Bo’az Klartag. Moment measures. Journal of Functional Analysis, 268(12):3834–3866, 2015
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ρ = ∇u♯ e−u

min
u∈𝒞(ℝd) ∫ u*dρ − ln (∫ e−u) min

μ∈𝒫(ℝd)
{ℰ(μ) + 𝒯(μ, ρ) : μ ∈ 𝒫1(ℝd)}

Cordero-Erausquin and Klartag (2015)  Santambrogio (2016)

Groundbreaking works

[1]

Solutions:  that verifyu Solutions:  that verifye−u

∫ μ ln(μ) dx
inf

f∈𝒞(ℝd) ∫ f dμ + ∫ f* dρ[1] [2]

[2]. Filippo Santambrogio Dealing with moment measures via entropy and optimal transport. Journal of Functional Analysis, 271(2):418–436, 2016



Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on pure and applied mathematic, 44(4):375–417, 1991.

[1]

𝒲2
2(μ, ν) := inf

T:ℝd → ℝd

T#μ = ν
∫ℝd

1
2 ∥x − T(x)∥2dμ(x)

Gaspard Monge. Mémoire sur la théorie des déblais et des  remblais. Histoire de l’Académie Royale des Sciences,  pages 666–704, 1781.
[2]

[1]

Monge Problem (1781)

Links with Optimal Transport

Link with Moment Measures:  is the optimal  of Monge problem from  to   
as  and  is convex.

∇u T⋆ μ = e−u ν = ρ
∇u♯ e−u = ρ u

The Monge problem    seeks a map  that transports  on  while minimizing the transport cost. T : ℝd → ℝd μ ν

Brenier’s Theorem           
Let  be a convex function. For any ,  is the optimal  of Monge problem between  and .u : ℝd → ℝ μ ∇u T⋆ μ ∇u# μ
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 convexu : ℝd → ℝ

Moment measures 
ρ = ∇u♯ e−u

[2]



Contributions
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We show why moment measures are unsuited for generative modeling. 

We demonstrate a new factorization:    Conjugate moment measure   ρ = ∇w*♯ e−w

We propose a method to estimate  of    from samples .w x1, …, xn ∼ ρ

We tested our approach on generative tasks.

Given a probability measure , there exists a convex function  such that:                                                             ρ u : ℝd → ℝ
Moment measures factorization

ρ = ∇u♯ e−u

Objective: 

x ̂x

Tie Sampling and Transport in the generative modeling process. 



[1]

Moment measures
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 convexu : ℝd → ℝ

Moment measures 
ρ = ∇u♯ e−u

min
u∈𝒞(ℝd) ∫ u*dρ − ln (∫ e−u)

Cordero-Erausquin and Klartag (2015)

KL(ρ∥𝔓u*) = ℰ(ρ) + ∫ u*dρ + ln (∫ e−u*)

min
u ∈ 𝒞(ℝd)

KL(ρ∥𝔓u*) − ln (∫ e−u ∫ e−u*)

Proposition Gaussian case
Let . If  is non degenerate, the solutions of the 

moment measures factorisation are  with 

. The associated Gibbs distribution is . 

ρ = 𝒩(0ℝd, Σ) Σ

um(x) =
1
2

(x − m)TΣ(x − m)

m ∈ ℝd e−um = 𝒩(m, Σ−1)

Gibbs Moment e°u

r

u*(y) := sup
x∈ℝd

⟨x, y⟩ − u(x)
Legendre transform: 

Figure 1: Gibbs factor and conjugate Gibbs factor of ⇢ = N
✓
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Gaussian distributions. The multivariate normal distribution N (m, ⌃) with ⌃ non-degenerate is recovered as by Pv

with v(x) = 1
2 (x � m)T⌃�1(x � m). When m 6= 0 or ⌃ is degenerate, Cordero-Erausquin and Klartag show that

N (m, ⌃) is not a moment measure. Yet, when ⌃ is non-degenerate, moment potentials of N (0, ⌃) exist and have an
analytical expression given by the following proposition.
Proposition 1. Let ⇢ = N (0Rd , ⌃). If ⌃ is non degenerate, the moment potential of ⇢ is

um(x) =
1

2
(x � m)T⌃(x � m),

for some m 2 Rd. The Gibbs factor of ⇢ is N (m, ⌃�1).

The proof is provided in the Appendix and relies on the fact that the OT map between two Gaussians is known in closed
form Peyré et al. (2019). Intuitively this results can be interpreted as follows. When a peaked distribution ⇢ is centered
around the origin (e.g. ⌃ ⇡ 0), its corresponding moment potential is such that the image set ru on the support of
Pu is necessarily tightly concentrated around 0. This has the implication that u is a slowly (almost constant) varying
potential on the entire support of Pu. As a result, one has the (perhaps) counter-intuitive result that the more peaky ⇢,
the more spread-out Pu must be. From this simple observation, validated experimentally in Section 3.3 we draw the
intuition that a change is needed to reverse this relationship, while still retaining the interest of a measure factorization
result.

3.2 Adding a Conjugate

Our main theorem is stated as follows:
Theorem 1. Let ⇢ be an absolutely continuous probability measure supported on a compact, convex set. Then, there
exists a convex function w such that

⇢ = rw
⇤
] Pw.

Similarly to the terminology we used for moment measures, we refer to ⇢ as the conjugate moment measure of w, the
potential w as the conjugate moment potential of ⇢, and Pw as ⇢’s conjugate Gibbs factor.

Proof Sketch. The complete proof, along with the theorems used in the proof, can be found in the Appendix. We
rely on the identity rw

⇤ � rw = id that holds for strictly convex functions w and show the existence of a strictly
convex potential w that verifies rw ] ⇢ = Pw. To proceed, we first introduce some notations. Let L(R) be the set of
functions mapping Rd to R [ {+1}. Given a non-negligible set ⌦ ⇢ Rd and a continuous function v : ⌦ ! R such
that

R
Rd e

�v(z)dz is finite, we denote by P⌦
v the probability measure with density

e
�v(x)1x2⌦R
⌦ e�v(z)dz

.

We then define, for a probability ⇢ supported on a non-negligible set ⌦, the map G
⌦
⇢ : L(R) ! L(R) which to a

potential v associates the Brenier potential, defined in equation 4, from ⇢ to P⌦
v

G
⌦
⇢ (v) := B(⇢, P⌦

v )

4

[1]  Dario Cordero-Erausquin and Bo’az Klartag. Moment measures. Journal of Functional Analysis, 268(12):3834–3866, 2015

𝔓u* =
e−u*

∫ e−u*
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Conjugate moment measures

Conjugate Moment Measure Theorem

Let  be an absolutely continuous probability measure supported on a compact, convex set. 
There exists a convex function  such that

ρ
w

 convexu : ℝd → ℝ

Moment measures 
ρ = ∇u♯ e−u

ρ = ∇w*♯ e−w

Sketch of Proof

Using ,     is equivalent to . ∇w ∘ ∇w* = id ∇ w♯ ρ = e−w

  is the OT map from  to ∇w ρ e−w

  is the Brenier potential  from  to w 𝔅(ρ, e−w) ρ e−w

  is a fixed point of w v → 𝔅(ρ, e−v)

 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures

We prove that  admits a fixed point using Schauder's fixed point Theorem.v → 𝔅(ρ, e−v)

 convexu : ℝd → ℝ

Moment measures 
ρ = ∇u♯ e−u



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Gaussian case

Proposition Gaussian case

 convexu : ℝd → ℝ

Moment measures 
ρ = ∇u♯ e−u
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Proposition Gaussian case
Let . If  is non degenerate, the solutions of the 

moment measures factorisation are  with 

. The associated Gibbs distribution is . 

ρ = 𝒩(0ℝd, Σ) Σ

um(x) =
1
2

(x − m)TΣ(x − m)

m ∈ ℝd e−um = 𝒩(m, Σ−1)

Let . If  is non degenerate, a solution of the conjugate 

moment measures factorisation is  with 

. The associated Gibbs distribution is . 

ρ = 𝒩(m, Σ) Σ

w(x) =
1
2

(x − r)TΣ−1/3(x − r)

r = (Id + Σ1/3)−1m e−w = 𝒩(r, Σ1/3)

Conj. Gibbs Moment e°w

Gibbs Moment e°u

r



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Estimate w

w0 := 1
2 ∥ ⋅ ∥2; ∀t ≥ 1, wt+1 := 𝔅(ρ, e−wt)

9/16

Estimate  of  from samples . w x1, …, xn ∼ ρ

Fixed-point algorithm

Goal

Ideas: 

 is the OT map from  to ∇w ρ e−w

  is the Brenier potential  from  to w 𝔅(ρ, e−w) ρ e−w

  is a fixed point of w v → 𝔅(ρ, e−v)

Algorithm: 

e−w0 = 𝒩(0,Id)



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Estimate w

w0 := 1
2 ∥ ⋅ ∥2; ∀t ≥ 1, wt+1 := 𝔅(ρ, e−wt)

1D case

Theorem:  The OT map between density functions  and  is    

with  the cumulative distribution function    and  

the quantile function  .

μ ν ∇𝔅(μ, ν) = C−1
ν ∘ Cμ .

Cμ : ℝ → [0,1] Cμ(x) := ∫
x

−∞
dμ C−1

μ : [0,1] → ℝ ∪ {−∞}

C−1
μ (r) := min{x ∈ ℝ ∪ {−∞} : Cμ(x) ≥ r} 9/16

Estimate  of  from samples . w x1, …, xn ∼ ρ

Fixed-point algorithm

Goal

Ideas: 

 is the OT map from  to ∇w ρ e−w

  is the Brenier potential  from  to w 𝔅(ρ, e−w) ρ e−w

  is a fixed point of w v → 𝔅(ρ, e−v)

Algorithm: 

e−w0 = 𝒩(0,Id)
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Figure 2: Comparison between the Gibbs factor Pu and the conjugate Gibbs factor Pw for two mixtures of 1D
Gaussian distributions, ⇢1 and ⇢2. The density plots overlay the (conjugate) Gibbs factor with ⇢ and a standard
Gaussian distribution N (0,1) for reference. Plots (a) and (c) show that the usual Gibbs factor’s spread is inverse to
that of ⇢. In plots (b) and (d) we see the far more suitable behavior of our conjugate moment factorization.

log-concave density like Pw (Roberts and Tweedie, 1996; Cheng and Bartlett, 2018; Dalalyan and Karagulyan, 2019).
Starting from an initial point x

(0), the LMC algorithm iterates according to the following update rule:

x
(k+1) = x

(k) � �rw(x(k)) +
p

2�z
(k)

, z
(k) ⇠ N (0, Id).

where � is the step size. After a warm-up period, the LMC iterates are distributed according to the log-concave
distribution Pw. As for the gradient of the convex conjugaterw

⇤, it can be efficiently estimated from w. By applying
Danskin’s envelope theorem (1966), it follows that rw

⇤(y) is the solution to the following concave maximization
problem,

rw
⇤(y) = arg sup

x
hx, yi � w(x) .

This optimization problem can be solved using algorithms such as gradient ascent, (L)BFGS (Liu and Nocedal, 1989),
or ADAM (Kingma and Ba, 2014). Thus, having access to a conjugate moment potential w of ⇢ enables to efficiently
sample from the target distribution ⇢. When the conjugate solver is warm-started with x0 = y, gradient steps can be
interpreted as a denoising procedure of the Langevin sample.

4.2 Fixed-point Approach

For a probability measure ⇢ 2 P(Rd), we define the map G⇢ : L(R) ! L(R) which to a potential w associates the
Brenier potential from ⇢ to Pw

G⇢(w) := B(⇢, Pw)

The fixed point of G⇢ correspond exactly to the conjugate moment potentials of ⇢. This observation motivates the
following fixed-point iteration scheme to compute a conjugate moment potential of ⇢:

w0 := 1
2k · k2; 8t � 1, wt+1 := G⇢(wt).

Algorithm 1 Fixed point training of w✓

1: Initialize w✓ such that w✓ ⇡ 1
2k · k2

2: while not converged do
3: Draw n i.i.d samples xi ⇠ ⇢

4: Draw y1, . . . , yn ⇠ Pw✓ using LMC algorithm
5: L✓  1

n

Pn
i=1 w✓(xi)� 1

n

Pn
i=1 w✓(x̃(yi))

6: Update w✓ with rL✓

7: end while

Starting from the standard Gaussian distribution Pw0 = N (0, Id), we iteratively compute the OT potential wt+1

between the distribution ⇢ and Pwt at iteration t + 1. During the next iteration t + 2, the updated distribution Pwt+1

becomes the target distribution for computing the next OT map starting from the source ⇢. We apply this methodology
when the OT map is available in closed form at each step. In all other cases, we found that performing just one
optimization step to estimate the OT map at each iteration was sufficient. For this reason, our final methodology relies

6
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 convexu : ℝd → ℝ

Moment measures 
ρ = ∇u♯ e−u

 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Estimate  when w d > 1

11/16

w0 := 1
2 ∥ ⋅ ∥2; ∀t ≥ 1, wt+1 := 𝔅(ρ, e−wt)Algorithm: 

Parameterize  with an input convex neural network (ICNN)     

Use an optimal transport solver    to estimate .

w wθ .

𝔅(ρ, e−wθ)[2]

Methodology: 

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conference on Learning Representations, 2023.[2]

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine Learning, pages 146–155. PMLR, 2017.[1]

[1]
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w wθ .
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Methodology: 
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Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine Learning, pages 146–155. PMLR, 2017.[1]

[1]
  MLP with non negative weights  

 + convex activation functions
≈



 is the solution of the dual objective: 

     

where the  is the convex conjugate of : 

 

with    Danskin. Theorem 

𝔅(μ, ν)

𝔅(μ, ν) ∈ arg inf
f∈ CVX (ℝd) ∫ℝd

f dμ + ∫ℝd

f* dν

f* f

f*(y) := sup
x∈ℝd

⟨x, y⟩ − f(x) = ⟨x⋆, y⟩ − f(x⋆) .

x⋆ = ∇f*(y)

                    From theory …  

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conference on Learning Representations, 2023.[2]

[1]

John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics, 14(4):641–664,1966.[1]
11/16

Estimate w
 convexw : ℝd → ℝ

ρ = ∇w*♯ e−w
Conjugate Moment Measures

w0 := 1
2 ∥ ⋅ ∥2; ∀t ≥ 1, wt+1 := 𝔅(ρ, e−wt)Algorithm: 

Parameterize  with an input convex neural network (ICNN) . 

Use an optimal transport solver    to estimate .

w wθ

𝔅(ρ, e−wθ)[2]

Methodology: 



 is the solution of the dual objective: 

     

where the  is the convex conjugate of : 

 

with    Danskin. Theorem 

𝔅(μ, ν)

𝔅(μ, ν) ∈ arg inf
f∈ CVX (ℝd) ∫ℝd

f dμ + ∫ℝd

f* dν

f* f

f*(y) := sup
x∈ℝd

⟨x, y⟩ − f(x) = ⟨x⋆, y⟩ − f(x⋆) .

x⋆ = ∇f*(y)

ℒMonge(θ) =
1
n

n

∑
i=1

wθ(xi) +
1
n

n

∑
j=1

⟨Vϕ(yj), yj⟩ − wθ(Vϕ(yj))

ℒconvex-dual(ϕ) =
1
n

n

∑
j=1

∥Vϕ(yj) − ∇w*θ (yj)∥2

                    From theory …  

A surrogate MLP  is used to approximate  

 and  are optimized using: 

Vϕ ∇w*θ

wθ Vϕ

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conference on Learning Representations, 2023.[2]

              … To practice

Computed with a conjugate solver
[1]

John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics, 14(4):641–664,1966.[1]
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 convexw : ℝd → ℝ
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Conjugate Moment Measures
Estimate  / Sample from  w ρ
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w0 := 1
2 ∥ ⋅ ∥2; ∀t ≥ 1, wt+1 := 𝔅(ρ, e−wt)Algorithm: 



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Estimate  / Sample from  w ρ
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Figure 2: Comparison between the Gibbs factor Pu and the conjugate Gibbs factor Pw for two mixtures of 1D
Gaussian distributions, ⇢1 and ⇢2. The density plots overlay the (conjugate) Gibbs factor with ⇢ and a standard
Gaussian distribution N (0,1) for reference. Plots (a) and (c) show that the usual Gibbs factor’s spread is inverse to
that of ⇢. In plots (b) and (d) we see the far more suitable behavior of our conjugate moment factorization.

log-concave density like Pw (Roberts and Tweedie, 1996; Cheng and Bartlett, 2018; Dalalyan and Karagulyan, 2019).
Starting from an initial point x

(0), the LMC algorithm iterates according to the following update rule:

x
(k+1) = x

(k) � �rw(x(k)) +
p

2�z
(k)

, z
(k) ⇠ N (0, Id).

where � is the step size. After a warm-up period, the LMC iterates are distributed according to the log-concave
distribution Pw. As for the gradient of the convex conjugaterw

⇤, it can be efficiently estimated from w. By applying
Danskin’s envelope theorem (1966), it follows that rw

⇤(y) is the solution to the following concave maximization
problem,

rw
⇤(y) = arg sup

x
hx, yi � w(x) .

This optimization problem can be solved using algorithms such as gradient ascent, (L)BFGS (Liu and Nocedal, 1989),
or ADAM (Kingma and Ba, 2014). Thus, having access to a conjugate moment potential w of ⇢ enables to efficiently
sample from the target distribution ⇢. When the conjugate solver is warm-started with x0 = y, gradient steps can be
interpreted as a denoising procedure of the Langevin sample.

4.2 Fixed-point Approach

For a probability measure ⇢ 2 P(Rd), we define the map G⇢ : L(R) ! L(R) which to a potential w associates the
Brenier potential from ⇢ to Pw

G⇢(w) := B(⇢, Pw)

The fixed point of G⇢ correspond exactly to the conjugate moment potentials of ⇢. This observation motivates the
following fixed-point iteration scheme to compute a conjugate moment potential of ⇢:

w0 := 1
2k · k2; 8t � 1, wt+1 := G⇢(wt).

Algorithm 1 Fixed point training of w✓

1: Initialize w✓ such that w✓ ⇡ 1
2k · k2

2: while not converged do
3: Draw n i.i.d samples xi ⇠ ⇢

4: Draw y1, . . . , yn ⇠ Pw✓ using LMC algorithm
5: L✓  1

n

Pn
i=1 w✓(xi)� 1

n

Pn
i=1 w✓(x̃(yi))

6: Update w✓ with rL✓

7: end while

Starting from the standard Gaussian distribution Pw0 = N (0, Id), we iteratively compute the OT potential wt+1

between the distribution ⇢ and Pwt at iteration t + 1. During the next iteration t + 2, the updated distribution Pwt+1

becomes the target distribution for computing the next OT map starting from the source ⇢. We apply this methodology
when the OT map is available in closed form at each step. In all other cases, we found that performing just one
optimization step to estimate the OT map at each iteration was sufficient. For this reason, our final methodology relies
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Figure 2: Comparison between the Gibbs factor Pu and the conjugate Gibbs factor Pw for two mixtures of 1D
Gaussian distributions, ⇢1 and ⇢2. The density plots overlay the (conjugate) Gibbs factor with ⇢ and a standard
Gaussian distribution N (0,1) for reference. Plots (a) and (c) show that the usual Gibbs factor’s spread is inverse to
that of ⇢. In plots (b) and (d) we see the far more suitable behavior of our conjugate moment factorization.

log-concave density like Pw (Roberts and Tweedie, 1996; Cheng and Bartlett, 2018; Dalalyan and Karagulyan, 2019).
Starting from an initial point x

(0), the LMC algorithm iterates according to the following update rule:

x
(k+1) = x

(k) � �rw(x(k)) +
p

2�z
(k)

, z
(k) ⇠ N (0, Id).

where � is the step size. After a warm-up period, the LMC iterates are distributed according to the log-concave
distribution Pw. As for the gradient of the convex conjugaterw

⇤, it can be efficiently estimated from w. By applying
Danskin’s envelope theorem (1966), it follows that rw

⇤(y) is the solution to the following concave maximization
problem,

rw
⇤(y) = arg sup

x
hx, yi � w(x) .

This optimization problem can be solved using algorithms such as gradient ascent, (L)BFGS (Liu and Nocedal, 1989),
or ADAM (Kingma and Ba, 2014). Thus, having access to a conjugate moment potential w of ⇢ enables to efficiently
sample from the target distribution ⇢. When the conjugate solver is warm-started with x0 = y, gradient steps can be
interpreted as a denoising procedure of the Langevin sample.

4.2 Fixed-point Approach

For a probability measure ⇢ 2 P(Rd), we define the map G⇢ : L(R) ! L(R) which to a potential w associates the
Brenier potential from ⇢ to Pw
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The fixed point of G⇢ correspond exactly to the conjugate moment potentials of ⇢. This observation motivates the
following fixed-point iteration scheme to compute a conjugate moment potential of ⇢:

w0 := 1
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Starting from the standard Gaussian distribution Pw0 = N (0, Id), we iteratively compute the OT potential wt+1

between the distribution ⇢ and Pwt at iteration t + 1. During the next iteration t + 2, the updated distribution Pwt+1

becomes the target distribution for computing the next OT map starting from the source ⇢. We apply this methodology
when the OT map is available in closed form at each step. In all other cases, we found that performing just one
optimization step to estimate the OT map at each iteration was sufficient. For this reason, our final methodology relies
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Figure 2: Comparison between the Gibbs factor Pu and the conjugate Gibbs factor Pw for two mixtures of 1D
Gaussian distributions, ⇢1 and ⇢2. The density plots overlay the (conjugate) Gibbs factor with ⇢ and a standard
Gaussian distribution N (0,1) for reference. Plots (a) and (c) show that the usual Gibbs factor’s spread is inverse to
that of ⇢. In plots (b) and (d) we see the far more suitable behavior of our conjugate moment factorization.
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This optimization problem can be solved using algorithms such as gradient ascent, (L)BFGS (Liu and Nocedal, 1989),
or ADAM (Kingma and Ba, 2014). Thus, having access to a conjugate moment potential w of ⇢ enables to efficiently
sample from the target distribution ⇢. When the conjugate solver is warm-started with x0 = y, gradient steps can be
interpreted as a denoising procedure of the Langevin sample.
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For a probability measure ⇢ 2 P(Rd), we define the map G⇢ : L(R) ! L(R) which to a potential w associates the
Brenier potential from ⇢ to Pw
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The fixed point of G⇢ correspond exactly to the conjugate moment potentials of ⇢. This observation motivates the
following fixed-point iteration scheme to compute a conjugate moment potential of ⇢:
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⇤
✓ ] e

�w✓ (bottom).

Image generation. We evaluate CMFGen on MNIST (LeCun et al., 2010) and the Cartoon dataset (Royer et al., 2018).
As illustrated in Figures 5, and 6, (see also 14 for additional generated cartoons), CMFGen successfully generates
visually coherent images of digits and cartoon faces. Interestingly, the noise sampled from the log-concave distribution
Pw✓ already exhibits features of the generated distribution: digits and faces emerge directly in the noise. To the best of
our knowledge, this is the first instance where the MNIST distribution has been successfully generated using an ICNN.
For comparison, Figures 5 and 15 show samples generated by ICNNs trained to transport a Gaussian distribution to the
MNIST and Cartoon data. For both datasets, CMFGen generates samples of higher quality.

Image reconstruction. Similar to normalizing flows (Rezende and Mohamed, 2015), we have access to the (un-
normalized) probability density of the distribution rw

⇤
✓]Pw✓ generated by CMFGen and CMFMA: that density is

proportional to e
�Ew✓

(x) where Ew✓ (x) = w✓(rw✓(x))� ln(det Hw✓ (x)) (see §3.3). After training w✓, this enables
downstream tasks such as image in-painting. To evaluate this, we mask half of the pixels in test samples from MNIST
and the Cartoon dataset, and perform gradient ascent on masked pixels to maximize the log-probability of the full
image. As seen in Figures 7, 16 and 17, our method effectively reconstructs missing regions.

Figure 5: MNIST Generation using CMFGen. Samples from the Gibbs noise distribution Pw✓ (left); digits generated
from rw

⇤
✓]Pw✓ (middle); digits generated by an ICNN trained to directly transport Gaussian noise to MNIST (right).

8
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⇡

⇡

Gibbs Pw✓ obtained from Langevin dynamics Gibbs Pw✓ obtained from rw✓]⇢

Conjugate rw
⇤
✓(y) = arg sup

x
hx, yi � w(x) Transportation map rw✓ = (rw

⇤
✓)

�1

Generated images rw
⇤
✓] Pw✓

Data distribution ⇢

Figure 6: Cartoon Generation using CMFGen. The conjugate potential w✓ is parameterized as an ICNN follow-
ing Vesseron and Cuturi (2024), with five hidden layers of size 512 and four quadratic input connections, each with two
additional layers of size 512. After training with CMFGen, the generative map rw✓ transforms structured data ⇢ into
the log-concave distribution Pw✓ . To sample from ⇢, we first draw a sample from Pw✓ using the LMC algorithm, and
then apply a conjugate solver to iteratively invert the map rw✓. The strict convexity of w✓ ensures both (i) invertibility
of rw✓, and (ii) correctness of Langevin dynamics for sampling from Pw✓ .

6 Conclusion

We borrowed inspiration from (Cordero-Erausquin and Klartag, 2015) to define a new representation for probability
measures. For a given ⇢, we prove the existence of a convex potential w such that rw

⇤
] Pw = ⇢. We show that this

representation is better suited to generative modeling, because the Gibbs factor Pw follows more closely the original
measure ⇢, in contrast to Cordero-Erausquin and Klartag’s approach, ru ] Pu = ⇢, which results in a Gibbs factor
Pu whose spread is inversely proportional to that of ⇢. Our conjugate measure factorization uses w to sample noises
(using LMC, guaranteed to work with log-concave distributions) and transforms these codes using rw

⇤. We propose
to parameterize the conjugate potential w as an ICNN w✓, and estimate it using the OT toolbox in two settings: when
the target distribution is accessible via samples, and when it is known up to a normalizing constant. We validate both
approaches on generative modeling tasks. In the future, we wish to explore the suitability of replacing N (0, I) with
our pre-trained Gibbs factor Pw in generative modeling pipelines, and retrain maps on top of it.

Figure 7: Image inpainting on Cartoon.

9



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Monge-Ampère equation

15/16

Probability measures

ρ(x) = e−ℰw(x) ℰw(x) = w(∇w(x)) − ln(det Hw(x)) + ln(Cw)ρ = ∇w*♯ e−w

Densities



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Monge-Ampère equation

15/16

Probability measures

ρ(x) = e−ℰw(x) ℰw(x) = w(∇w(x)) − ln(det Hw(x)) + ln(Cw)ρ = ∇w*♯ e−w

Densities

Image reconstruction
Applications



 convexw : ℝd → ℝ
ρ = ∇w*♯ e−w

Conjugate Moment Measures
Monge-Ampère equation

15/16

Probability measures

ρ(x) = e−ℰw(x) ℰw(x) = w(∇w(x)) − ln(det Hw(x)) + ln(C)ρ = ∇w*♯ e−w

Densities

Image reconstruction
Applications

�5.0�2.5 0.0 2.5
5.0�5.0

�2.5
0.0

2.5
5.0
�5.0
�2.5
0.0
2.5
5.0

E1

�5.0�2.5 0.0 2.5
5.0�5.0

�2.5
0.0

2.5
5.0
�5

0

5

wq(�wq)� ln(detHq)

�5.0�2.5 0.0 2.5
5.0�5.0

�2.5
0.0

2.5
5.0
�5

0

5

wq

�4 �2 0 2 4 �4
�2

0
2

4

�5

0

5

�w�
q #Pwq

�5.0�2.5 0.0 2.5
5.0�5.0

�2.5
0.0

2.5
5.0

0
2
4
6

E2

�5.0�2.5 0.0 2.5
5.0�5.0

�2.5
0.0

2.5
5.0
�2
0
2
4
6

wq(�wq)� ln(detHq)

�5.0�2.5 0.0 2.5
5.0�5.0

�2.5
0.0

2.5
5.0

0

5

10

wq

�4 �2 0 2 4 �4
�2

0
2

4
�2
0
2
4
6

�w�
q #Pwq

Figure 3: Learning the conjugate moment potential from an energy. E1 and E2 are learned by regression with
CMFMA. The second column shows the learned energy; the third displays the corresponding conjugate moment
potential; the fourth shows samples (in red) drawn from rw

⇤
✓]Pw✓ .

The distribution ⇢1 is sharply concentrated around zero, whereas ⇢2 exhibits heavier tails. For comparison, we also
compute the standard moment potentials using the fixed-point method described in Appendix B.1. The pushforward
densities rw

⇤
]Pw and ru]Pu (Figures 11 and 8) closely match the target distributions, confirming that the three

algorithms successfully recover the (conjugate) moment potentials for ⇢1 and ⇢2. The recovered conjugate potentials
are shown in Figures 9 and 10. As illustrated in Figure 2 (a), the Gibbs factor associated with ⇢1 has heavier tails
than the standard Gaussian, consistent with the theoretical insight that concentrated distributions yield broader Gibbs
measures. Conversely, the broader ⇢2 induces a more concentrated Gibbs factor (panel (c)). In contrast, the conjugate
Gibbs factors (panels (b) and (d)) more closely match the target distributions.

5.2 2D Experiments

We consider several 2D distributions defined either through samples—(a) Circles, (b) S-curve, (c) Checkerboard, (d)
Scaled-Rotated S-curve, and (e) Diag-Checkerboard (Figure 4)—or through known energy functions E1, E2, and E3

(Figures 3and 12). Our first step is to estimate a conjugate moment potential w✓ for these distributions using either
the CMFGen or the CMFMA algorithm. Following this, we generate new samples based on the learned conjugate
potential w✓ using the methodology detailed in §4.1. The potential w✓ is implemented as an ICNN with five hidden
layers of size 128 and quadratic input connections, based on the architecture of Vesseron and Cuturi (2024). Detailed
hyperparameters for both 2D and high-dimensional experiments are provided in Appendix E.

CMFMA. The energy functions E1, E2, and E3 are standard 2D benchmarks for evaluating optimization algorithms;
their analytical forms are provided in Appendix C.2. For all three, the ICNNs w✓ successfully learn the corresponding
energy landscape and permit to draw new samples from the target distributions, as demonstrated in Figure 3 and 12.

CMFGen. Our method accurately estimates the conjugate moment potentials, as the associated measures rw
⇤
✓ ] Pw✓

closely align with the target distributions in Figure 4. The second row further illustrates that the conjugate Gibbs
factor follows the shape of the distribution ⇢ in each case. For comparison, we train an ICNN to map a Gaussian
directly to the target distribution using the solver of Amos (2023). The boxplots in Figure 13, which show the Sinkhorn
divergence (Ramdas et al., 2017) between generated and target data, demonstrate that CMFGen consistently produces
samples of equal or superior quality. Note that CMFGen introduces no additional hyperparameters compared to the
generative ICNN, aside from the number of LMC steps used when sampling from Pw✓ .

5.3 High-dimensional experiments.

7
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Figure 5: Convergence of the fixed-point algorithm.

All runs have been made on single GPU V100 or A100-40GB. All the experiments in Figure 3 were generated using a
common set of hyperparameters, detailed in Table 1. The number of particles used (i.e., batch size) and the chosen
step size � in the LMC process vary across experiments. For the 2D distributions Circles, S-curve, and Scaled-Rotated
S-curve, we used 1024 particles, while for Checkerboard and Diag-Checkerboard, a larger number of particles (4096)
was used to ensure the stability of the algorithm. The step size � used in the LMC process depends on the shape of the
log concave distribution Pw⇤

✓
. Specifically, we used a step size of 5e-5 for Circles, 1e-4 for S-curve and Scaled-Rotated

S-curve, and 1e-3 for Checkerboard and Diag-Checkerboard.

The hyperparameters used for the MNIST experiments are given in Table 2. To determine these hyperparameters, we
used commonly applied architectures for ICNNs and conducted a grid search over � testing values 1e-3, 5e-4, 1e-4, 5e-5
and 1e-5, as well as for the learning rate of w✓, considering values 1e-3, 5e-4 and 1e-4. We adopt the approach of Amos
(2023), where the cost of computing the conjugate at each training step is amortized by initializing the conjugate solver
with the predictions of an MLP. This MLP is trained via regression on the outputs of the conjugate solver. The MLP
consists of three hidden layers with 128 units each for the 2D experiments and three hidden layers with 256 units each
for the MNIST experiment. It is trained using the Adam optimizer with default parameters, and a fixed learning rate of
1e-4 for the 2D experiments and 5e-4 for the MNIST experiment. It is important to note that the number of LMC steps
listed in the tables refers to the steps taken to sample from Pw✓ starting from uniform noise, as used to generate the
figures. During training, however, we reuse the particles sampled from the previous gradient step and apply 200 LMC
steps to these particles to form the new batch.
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  is the Brenier potential  from  to w 𝔅(ρ, e−w) ρ e−w
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v ) ρ 𝔓Ω

v Ω ⊂ ℬ(0,R) ⟹ ∥∇𝔅(ρ, 𝔓Ω
v )∥ ≤ R

    is  Lipschitz⟹ 𝔅(ρ, 𝔓Ω
v ) R

 is continuousA = GΩ
ρ Based on the Theorem: νn → ν ⟹ 𝔅(ρ, νn) → 𝔅(ρ, ν)

ℙ unif.


