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Generation using Conjugate Moment Measures
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Generative Modeling

Objective: Given samples xi, ..., x, ~ p, draw new samples from p.

VAE

<>

Random Noise
€ ~ p(e)

Diffusion models

Current solutions: Sample a noise z (e.g. Gaussian) Learn a transport map ¢ such that ¢(z) ~ p

[1] Drawings from Yang Song blog: https://yang-song.net/blog/2021/score/ 2/16



Generative Modeling

Objective: Given samples xi, ..., x, ~ p, draw new samples from p.

VAE

<>

Random Noise
€ ~ p(e)

Diffusion models

Current solutions: Sample a noise z (e.g. Gaussian) Learn a transport map ¢ such that ¢(z) ~ p

Question: Can we tie Sampling and Transport ?

[1] Drawings from Yang Song blog: https://yang-song.net/blog/2021/score/ 2/16



Moment measures

S ]
Moment measures factorization Theorem

Given a probability measure p that admits a first moment, whose barycenter is 0, and which is not
supported on a hyperplane, there exists a convex function u : R? — R such that:

p=Vuge™ X

Groundbreaking works "' () dx L LAl P
Cordero-Erausquin and Klartag (2015) | Yﬂtambrogio me
min, [usdp—n [ e) min [EG0+T(ip): p € Py(RY)
—> Solutions: u that verify % —> Solutions: e7* that verify %

1] Dario Cordero-Erausquin and Bo'az Klartag. Moment measures. Journal of Functional Analysis, 268(12):3834-3866, 2015

2]. Filippo Santambrogio Dealing with moment measures via entropy and optimal transport. Journal of Functional Analysis, 271(2):418-436, 2016
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Moment measures

Links with Optimal Transport p=Vuye™

u: RY - R convex

Monge Problem (1781)

The Monge problemm seeks a map T : RY — R that transports i on v while minimizing the transport cost.

T-RY 5 R4
Typ =v

W= ot | = Tl
Rd

Brenier's Theorem'4

Let u : R? - R be a convex function. For any u, Vu is the optimal T* of Monge problem between p and Vuy u.

Link with Moment Measures: Vu is the optimal T™ of Monge problem from uy = e “tov = p

u

as Vuge™ = p and u is convex.

[1] Gaspard Monge. Mémoire sur la théorie des déblais et des rembilais. Histoire de I'"Académie Royale des Sciences, pages 666—704, 1781.

[2] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on pure and applied mathematic, 44(4):375-417, 1991,
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Contributions

Objective: Tie Sampling and Transport in the generative modeling process.

Random Noise

Moment measures factorization

Given a probability measure p, there exists a convex function u : RY — R such that: p=Vuge ™ X

We show why moment measures are unsuited for generative modeling.

We demonstrate a new tactorization: | Conjugate moment measure p = Vw*ﬂe_w \ g

We propose a method to estimate w of & from samples x, ..., x, ~ p.

We tested our approach on generative tasks.
5/16



Moment measures

Moment measures p=Vuge™

u: RY - R convex

Cordero-Erausquin and Klartag (2015) .

Proposition Gaussian case
min *dp — In —H
UEB(RY) Ju F (Je ) Let p = N (Opa, X). If 2 is non degenerate, the solutions of the

. moment measures factorisation are u, (x) = E(X — m)!' Z(x — m) with
e"“‘*)

KL D) =& *dp + 1
PlBy) = &) + u e ( m € R The associated Gibbs distribution is e ™ = A (m, 7).

—u*

B =

€
[er

Gibbs Moment ¢

- min KL(pH’Bu*)—ln( e " e‘“*)

u € G(RY

Legendre transform:

u*(y) := sup (x,y) — u(x)

xeR4

[1] Dario Cordero-Erausquin and Bo'az Klartag. Moment measures. Journal of Functional Analysis, 268(12):3834-3866, 2015 6/16



Moment measures Conjugate Moment Measures

p=Vuye™ Conjugate moment measures , _ Vit e

u: RY > R convex w : R4 > R convex

Conjugate Moment Measure Theorem

Let p be an absolutely continuous probability measure supported on a compact, convex set.
There exists a convex function w such that D = Vw*ﬁ e ™" %

Sketch ot Proot

Using Vwe Vw* =i, X isequivalentto V wgp =e "

W

»Vw is the OT map from p to e”

w

> w is the Brenier potential B(p,e™) from p to e

> w is a fixed point of v = B(p,e™")

We prove that v = B(p, e™") admits a fixed point using Schauder's fixed point Theorem.
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Moment measures Conjugate Moment Measures

p=Vige™ Gaussian case p =Vt e™

u: RY > R convex w: RY > R convex

Proposition Gaussian case

Let p = N (Opa, X). If 2 is non degenerate, the solutions of the B Conj. Gibbs Moment e
Gibbs Moment e *

moment measures factorisation are u, (x) = E(X — m)' Z(x — m) with

m € R% The associated Gibbs distribution is e *» = A (m, X71).

Proposition Gaussian case

Let p = N (m, X). It £ is non degenerate, a solution of the conjugate

moment measures factorisation is w(x) = E(X — NIZ=3(x = r) with

r=(,;+ >3y~ The associated Gibbs distribution is e ™ = A/ (r, ).
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Conjugate Moment Measures
Estimate w p=Vwhe™ x
w: R? > R convex

Goal

Estimate w of X from samples x;, ...,x, ~ p.

Fixed-point algorithm

Ideas: Algorithm:
Vw is the OT map from p to e™ 1 _
| | X .'0 B B Wy 1= 5” 1% V> 1, W = B(p, e ™)
w is the Brenier potential B(p,e™) from p to e™ |
L . .
w is a fixed point of v = B(p,e™") e = ¥(0.1)

9/16



Conjugate Moment Measures
Estimate w p=Vwie™ x
w: R? > R convex

Goal

Estimate w of X from samples x;, ...,x, ~ p.

Fixed-point algorithm

Ideas: Algorithm:
Vw is the OT map from p to e™ 1 _
| | X .'0 B B Wy 1= EH 1% V> 1, W = B(p, e ™)
w is the Brenier potential B(p,e™) from p to e™ |
L . .
w is a fixed point of v = B(p,e™") e = ¥(0.1)

1D case

Theorem: The OT map between density functions g and vis VB(u,v) = C, ! o C,.

with C,: R —[0,1] the cumulative distribution function C,(x) 1= J du and Cﬂ_1 :[0,1] > RU {—00}

the quantile function Cﬂ_l(r) =min{x € RU {—oc0}: Cﬂ(x) > ri}. 9/16



Moment measures
u

p=Vuge”

u: RY > R convex

Gibbs Factor *3,,
= (0,1)
M p

density

A

0

—10

Conjugate Moment Measures

w

Estimate w p=Vwhe

w: R?Y 5 R convex

density
density

—2 2 -5 5
“2 Conj. Gibbs Factor *3,, Gibbs Factor *)3, 1 Conj Gibbs Factor ‘3,
= (0,1) = o (0,1) =@, 1)
__oJ = o M p
2 & 2
= = =
S 3 3
........................................................ ] L — : — N
10 —4 —2 —5 S -5 5
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Conjugate Moment Measures

Estimate w when d > 1 p=Vwte™

w: R4 > R convex

Algorithm:  wy:= 2| - % Vi> 1, w,, =B(p.e™)
1
Methodology: Parameterize w with an input convex neural network (ICN N)[ ]w@.

2]

Use an optimal transport solver™ to estimate B(p, e™"9).

[1] Brandon Amos, Lei Xu, and | Zico Kolter: Input convex neural networks. In International Conference on Machine Learning, pages 146—155. PMLR, 2017.
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[2] Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conferenceon Learning Representations, 2023.



Conjugate Moment Measures

Estimate w when d > 1 p=Vwte™

w: R4 > R convex

: 1 _
Algorithm:  w; := —|| - 1% Vi>1, w,,:=B(p,e™)
. . . [1]
Methodology: Parameterize w with an input convex neural network (ICNN) wg.~ MLP with non negative weights

[2] + convex activation functions

[1] Brandon Amos, Lei Xu, and | Zico Kolter: Input convex neural networks. In International Conference on Machine Learning, pages 146—155. PMLR, 2017.

11/16

[2] Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conferenceon Learning Representations, 2023.



Conjugate Moment Measures
Estimate w p=Vwke™

| w : R4 > R convex

Algorithm:  wy = |- I Vi>1, w. = B(p,e™)

Methodology:

2]

Use an optimal transport solver™ to estimate B(p, e™"9).

From theory ...

B(u,v) is the solution of the dual objective:

B(u,v) € arginf J fdu +J *dv
feCVX(RY JRd Rd

where the f* is the convex conjugate of f:

f¥(y) = sup (x,y) —fx) = (x*,y) — f(x™).

xeR?

with x* = Vf*(y) Danskin. Theorem!'!

[1]  John M Danskin. The theory of max-min, with applications.SIAM Journal on Applied Mathematics, |4(4):641-664,1966.

[2] Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conferenceon Learning Representations, 2023.
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Conjugate Moment Measures
Estimate w p=Vwke™

| w : R4 > R convex

Algorithm:  wy = |- I Vi>1, w. = B(p,e™)

Methodology:

2]

Use an optimal transport solver™ to estimate B(p, e™"9).

From theory ... ... To practice

B(u, v) is the solution of the dual objective: A surrogate MLP V,, is used to approximate Vw?*

B(u,v) € argint J Jdu + J J*dy wy and V, are optimized using:
feCVX(RY JRd Rd

1 « 1 «
ZMonge(?) = - Z Wg(X;) . Z Vo 3i) = wo(Vip ()
=1 j=1

where the f* is the convex conjugate of f:

1 n
f*(y) = Suﬂgd <X, y) _f(X) — <X*9 y> _f(X*) ° c>?(:anex_dua|(¢) — ; Z ”V¢(y]) — y])HZ
e /=1 Computed with a conjugate solver

with x* = Vf*(y) Danskin. Theorem!'!

[1]  John M Danskin. The theory of max-min, with applications.SIAM Journal on Applied Mathematics, |4(4):641-664,1966.

[2] Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conferenceon Learning Representations, 2023.
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Conjugate Moment Measures

Estimate w / Sample from p ;= vyyx e

i w: RY > R convex

Algorithm:  wy = <[l - [ V> 1, wy = B(p,e™)
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Conjugate Moment Measures

Estimate w / Sample from p ;= vyyx e

1 w: RY > R convex

Algorithm:  wy = <[l - [ V> 1, wy = B(p,e™)

Estimate w with w,

Algorithm
o o . ~ 1 2
Inlt.lahze wg such that wg ~ 5| - | + Initialization Wy = %H 2
while not converged do
Draw n 1.1.d samples x; ~ p » Sample from P
Draw y1,...,y, ~ e "¢ using LMC algorithm » Sample from e~ " with adaptative y

Update wy with V.Ly » One gradient step to estimate B(p, e ")

end while

Lo+ +> 0 jwolm)— >0, we(if?(yz))}

Sample from ¢™"? using Langevin Monte Carlo (LMC) xKHD = (o) _ ;/ng(x(k)) -+ \/2;/z(k), 75~ N (0,1,)
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Estimate w / Sample from p

1 2.
wo == - I

; Vi > 1,

Algorithm: Wi = B(p,e™™)

Estimate w with w,

Algorithm

Initialize wy such that wg =

Conjugate Moment Measures

—W

p=Vw¥e

w: R?Y 5 R convex

1

1 2
ol - |
while not converged do

> Initialization wy := =|| - I&

» Sample from P

Draw n 1.1.d samples x; ~ p
Draw y1, ...,y ~ e "0 using LMC algorithm

Lo+ +> 0 jwolm)— >0, we(if?(yz))}

Update wy with V Ly
end while

» Sample from e

— Wy

Sample from p ~ Vw¥ e

Sample from ¢™"? using Langevin Monte Carlo (LMC)

(k+1) _

» One gradient step to estimate B(p,

— ¥ Vwy(x®) + /2720, 20 ~ #(0,1))

Transport using Vw* with a gradient ascent algorithm  Vw¥(y) = arg sup (x, y) — wy(x)

0

X

e ")
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Conjugate Moment Measures

2D Experiments p=Vwhe™

w: R?Y 5 R convex

0.8

Measure p

potential wy

We

0.8

0.0

o f

-0.8

1.5

0.0

s

s 7
*'é 5.
s
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Conjugate Moment Measures

Cartoon Experiments d = 3072, = vy,

w: RY > R convex

Gibbs *P ,,, obtained from Langevin dynamics ~ Gibbs ‘B3 ,,, obtained from Vwgfp

Data distribution p

2

Generated images Vw, §°B ., 14/16



Conjugate Moment Measures

Monge-Ampere equation p=Vwhe™
w: R? > R convex
Probability measures Densities
p=Vw*e™ p(x) = e~ & & (x) = w(Vw(x)) — In(det H (x)) + In(C,)
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Conjugate Moment Measures

Monge-Ampere equation p=Vwhe™
w: R? > R convex
Probability measures Densities
p=Vw*e™ p(x) =e & & (x) = w(Vw(x)) — In(det H (x)) + In(C,)
Applications

Image reconstruction

i e
Ao v
i :
- L : ,'.’ g ;.:.
a | " ... &“'. .l{’
L, § - ~
e &
] 1.._ .
= ‘}
o W F o=
: i e
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Conjugate Moment Measures

Monge-Ampere equation p=Vwhe™
w: RY > R convex
Probability measures Densities
p=Vw*e™ p(x) = e~ & & (x) = w(Vw(x)) — In(det H (x)) + In(C)
Applications Learn w when p is known up to a

Image reconstruction o
normalizing constant

&1 WQ(VWQ) — ln(detHg) We VWB#‘BWQ

-

<5.0
< 725

~5.0 . 0.0
=2 00 .. <25

-
h
T,

50-50

-
‘ ‘ L.
i
" :v ..
..

h) WQ(VWQ) — ll’l(detHg)

nigilln o e
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In this work Next

Extend theoretical results of %

We introduce a new factorization p = Vw*;e™ %
(unicity of w?, relax assumptions)

We propose a method to estimate w when p is known

either through samples or up to a normalizing constant Scale the method to more
challenging datasets

We apply it to generative modeling

Thank You!
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Conjugate Moment Measures
Estimate w p=Vwke™

w: R?Y 5 R convex

=% Conj. Gibbs Factor *33,,

Gibbs Factor *)3,
N (0,1
P1

density
density

A

0

Gibbs Factor ‘3,
m v (0,1)
M P

density
density




Conjugate Moment Measures

Conjugate moment measures  , _ v, .~

w: R?Y 5 R convex

Conjugate Moment Measure Theorem

Let p be an absolutely continuous probability measure supported on a compact, convex set.
There exists a convex function w such that p=Vwiie™ %

Sketch of Proot

Using Vwe Vw* =i, X isequivalent to Vwgp = e .

w

»Vw is the OT map from p to e”

w

> w is the Brenier potential B(p,e™) from p to e

> w is a fixed point of v = B(p,e™")



Conjugate Moment Measures

Conjugate moment measures  , _ v, .~

w: R4 > R convex

Conjugate Moment Measure Theorem

Let p be an absolutely continuous probability measure supported on a compact, convex set.

There exists a convex function w such that p=Vwiie™ %

Sketch of Proot

Using Vwe Vw* =i, X isequivalent to Vwgp = e .

w

»Vw is the OT map from p to e”

w

> w is the Brenier potential B(p,e™) from p to e

> w is a fixed point of v = B(p,e™")

1 —Vy
We define PB* = Ige where € is the compact, convex support of p and GpQ(v) = B(p, P’ .
eV
Q
how that G2 admits a fixed point v and w defined = e ves X
We show that G,” admits a fixed point v and w defined as w(x) := too else solves X .



Conjugate Moment Measures

Conjugate moment measures  , _ v, .~

w: R4 > R convex

Schauder's tixed point Theorem
et (X,]|.]|) be a Banach space and /# C X is compact, convex, and nonempty. Any continuous operator A : # — M

nas at least one fixed point.

In this proof X1 = (CE), I o)

M = {f € C(Q) such that Vx,y € Q, | f(x) = f(3)| < Rllx = yll, and f(0r.) = 0}
with R such that, Q C A(0,R) = {x € IRd,Htz <R}

e—V

IQ
e

A=G§2:v—>23(p,2[3f}) with P =



Conjugate Moment Measures

Conjugate moment measures  , _ v, .~

w: R?Y 5 R convex

Schauder's tixed point Theorem
et (X,]|.]|) be a Banach space and /# C X is compact, convex, and nonempty. Any continuous operator A : # — M

nas at least one fixed point.

In this proof X1 = (CE), I o)

M = {f € C(Q) such that Vx,y € Q, | f(x) = f(3)| < Rllx = yll, and f(0r.) = 0}
with R such that, Q C A(0,R) = {x € IRd,Htz <R}

e—V

1!2
e

A=G§2:v—>23(p,2[3§2) with P =

A is a non-empty, compact, convex set ot X « (Arzela-Ascoli theorem for compactness)

A: M — M The OT map VB(p, P:?) transports p on P'* supported on Q € B(O,R) = |[VB(p, PP)|| <R

P unif. — %(P, mf}) s R LipSChitZ

A = ng is continuous Based on the Theorem: v, > v — B(p,v,) = B(p,v)



