

Sample and Map from a Single Convex Potential: Generation using Conjugate Moment Measures

Nina VesseronLouis BéthuneCREST - ENSAEApple

Marco Cuturi CREST - ENSAE & Apple

Generative Modeling

Objective: Given samples $x_1, ..., x_n \sim \rho$, draw new samples from ρ .

Current solutions: Sample a noise z (e.g. Gaussian) **Learn a transport map** ϕ such that $\phi(z) \sim \rho$

[1] Drawings from Yang Song blog: https://yang-song.net/blog/2021/score/

Diffusion models ^[1]

Generative Modeling

Objective: Given samples $x_1, \ldots, x_n \sim \rho$, draw new samples from ρ .

Current solutions: Sample a noise z (e.g. Gaussian)

[1] Drawings from Yang Song blog: https://yang-song.net/blog/2021/score/

Diffusion models ^[1]

Learn a transport map ϕ such that $\phi(z) \sim \rho$ **Question**: Can we tie Sampling and Transport ?

Moment measures factorization Theorem^[1]

Given a probability measure ρ that admits a first moment, whose barycenter is 0, and which is not supported on a hyperplane, there exists a convex function $u : \mathbb{R}^d \to \mathbb{R}$ such that:

 $\rho = \nabla u_{\sharp} e^{-u} \quad \bigstar$

Groundbreaking works ^{[1] [2]} Cordero-Erausquin and Klartag (2015) $\min_{u \in \mathscr{C}(\mathbb{R}^d)} \left[u^* \mathrm{d}\rho - \ln\left(\int e^{-u}\right) \right]$ \longrightarrow Solutions: *u* that verify \bigstar

[1] Dario Cordero-Erausquin and Bo'az Klartag. Moment measures. Journal of Functional Analysis, 268(12):3834–3866, 2015 [2]. Filippo Santambrogio Dealing with moment measures via entropy and optimal transport. Journal of Functional Analysis, 271(2):418–436, 2016

Links with Optimal Transport

Monge Problem (1781)

The Monge problem^[1] seeks a map $T: \mathbb{R}^d \to \mathbb{R}^d$ that transports μ on ν while minimizing the transport cost. $\mathscr{W}_2^2(\mu,\nu) := \inf_{T:\mathbb{R}^d \to \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{1}{2} \|x - T(x)\|^2 \mathrm{d}\mu(x)$

Brenier's Theorem^[2]

Link with Moment Measures: ∇u is the optimal T^{\star} of Monge problem from $\mu = e^{-u}$ to $\nu = \rho$ as $\nabla u_{\sharp} e^{-u} = \rho$ and u is convex.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie Royale des Sciences, pages 666-704, 1781. Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on pure and applied mathematic, 44(4):375–417, 1991. [2]

Moment measures $\rho = \nabla u_{\sharp} e^{-u}$ $u: \mathbb{R}^d \to \mathbb{R}$ convex

Let $u : \mathbb{R}^d \to \mathbb{R}$ be a convex function. For any μ , ∇u is the optimal T^* of Monge problem between μ and $\nabla u_{\#} \mu$.

Contributions

Objective: Tie Sampling and Transport in the generative modeling process.

Moment measures factorization Given a probability measure ρ , there exists a convex function $u: \mathbb{R}^d \to \mathbb{R}$ such that:

- We show why moment measures are unsuited for generative modeling.
- We demonstrate a new factorization:

- We propose a method to estimate w of \blacktriangleleft
- We tested our approach on generative tasks.

$$\rho = \nabla u_{\sharp} e^{-u}$$

Conjugate moment measure $\rho = \nabla w^*_{\sharp} e^{-w} \blacklozenge$

• from samples
$$x_1, \ldots, x_n \sim \rho$$
.

Cordero-Erausquin and Klartag (2015)^[1]

$$\min_{u \in \mathscr{C}(\mathbb{R}^{d})} \int u^{*} d\rho - \ln\left(\int e^{-u}\right) \qquad \text{Let } \rho$$

$$\mathsf{KL}(\rho || \mathfrak{P}_{u^{*}}) = \mathscr{C}(\rho) + \int u^{*} d\rho + \ln\left(\int e^{-u^{*}}\right) \qquad m \in$$

$$\mathfrak{P}_{u^{*}} = \frac{e^{-u^{*}}}{\int e^{-u^{*}}}$$

Legendre transform:

$$u^*(y) := \sup_{x \in \mathbb{R}^d} \langle x, y \rangle - u(x)$$

[1] Dario Cordero-Erausquin and Bo'az Klartag. Moment measures. Journal of Functional Analysis, 268(12):3834–3866, 2015

Moment measures $\rho = \nabla u_{\sharp} e^{-u}$ $u: \mathbb{R}^d \to \mathbb{R}$ convex

 $\rho = \nabla u_{\sharp} e^{-u}$ $u: \mathbb{R}^d \to \mathbb{R}$ convex

Conjugate moment measures

Conjugate Moment Measure Theorem

Let ρ be an **absolutely continuous** probability measure **supported on a compact, convex** set. There exists a convex function w such that $\rho = \nabla w^*_{\sharp} e^{-w}$ \bigstar

Sketch of Proof

Using $\nabla w \circ \nabla w^* = i_d$, \bigstar is equivalent to $\nabla w_{\sharp} \rho = e^{-w}$. $\longrightarrow \nabla w$ is the OT map from ρ to e^{-w} $\longrightarrow w$ is the Brenier potential $\mathfrak{B}(\rho, e^{-w})$ from ρ to e^{-w} $\longrightarrow w$ is a fixed point of $v \rightarrow \mathfrak{B}(\rho, e^{-v})$

We prove that $v \to \mathfrak{B}(\rho, e^{-v})$ admits a fixed point using Schauder's fixed point Theorem.

Conjugate Moment Mea

$$\rho = \nabla w^*{}_{\sharp} e^{-w}$$
$$w : \mathbb{R}^d \to \mathbb{R} \text{ convex}$$

as	re	ς
22		3

 $\rho = \nabla u_{\sharp} e^{-u}$ $u: \mathbb{R}^d \to \mathbb{R}$ convex

Gaussian case

Proposition Gaussian case Let $\rho = \mathcal{N}(0_{\mathbb{R}^d}, \Sigma)$. If Σ is non degenerate, the solutions of the moment measures factorisation are $u_m(x) = \frac{1}{2}(x-m)^T \Sigma(x-m)$ with $m \in \mathbb{R}^d$. The associated Gibbs distribution is $e^{-u_m} = \mathcal{N}(m, \Sigma^{-1})$.

Proposition Gaussian case

Let $\rho = \mathcal{N}(m, \Sigma)$. If Σ is non degenerate, a solution of moment measures factorisation is $w(x) = \frac{1}{2}(x-r)^T \Sigma^{-1/3}(x-r)$ with $r = (I_d + \Sigma^{1/3})^{-1}m$. The associated Gibbs distribution is $e^{-w} = \mathcal{N}(r, \Sigma^{1/3})$.

Conjugate Moment Measures

 $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Conj. Gibbs Moment e^{-w}

Gibbs Moment e^{-u}

ρ

$$c e^{-w} - \lambda (r \Sigma^{1/3})$$

Goal

Estimate w of \star from samples $x_1, \ldots, x_n \sim \rho$.

Fixed-point algorithm

Ideas:

- ∇w is the OT map from ρ to e^{-w}
- w is the Brenier potential $\mathfrak{B}(\rho, e^{-w})$ from ρ to e^{-w}
- w is a fixed point of $v \to \mathfrak{B}(\rho, e^{-v})$

Estimate w

Conjugate Moment Mea $\rho = \nabla w^* {}_{!!} e^{-w} \quad \bigstar$

$$w: \mathbb{R}^d \to \mathbb{R}$$
 convex

Algorithm:

$$w_0 := \frac{1}{2} \| \cdot \|^2; \quad \forall t \ge 1, \quad w_{t+1} := \mathfrak{B}(\rho, e^{-\nu})$$
$$\downarrow$$
$$e^{-\nu_0} = \mathcal{N}(0, I_d)$$

a	S	U	r	e	S

Goal

Estimate w of \star from samples $x_1, \ldots, x_n \sim \rho$.

Fixed-point algorithm

Ideas:

- ∇w is the OT map from ρ to e^{-w}
- w is the Brenier potential $\mathfrak{B}(\rho, e^{-w})$ from ρ to e^{-w}
- w is a fixed point of $v \to \mathfrak{B}(\rho, e^{-v})$

1D case

Theorem: The OT map between density functions μ

with $C_{\mu} : \mathbb{R} \to [0,1]$ the cumulative distribution function $C_{\mu}(x) := \int_{-\infty}^{x} d\mu$ and $C_{\mu}^{-1} : [0,1] \to \mathbb{R} \cup \{-\infty\}$ the quantile function $C_{\mu}^{-1}(r) := \min\{x \in \mathbb{R} \cup \{-\infty\} : C_{\mu}(x) \ge r\}.$

Estimate w

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w} \quad \bigstar$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Algorithm:

$$w_0 := \frac{1}{2} \| \cdot \|^2; \quad \forall t \ge 1, \quad w_{t+1} := \mathfrak{B}(\rho, e^{-\nu})$$
$$\downarrow$$
$$e^{-\nu_0} = \mathcal{N}(0, I_d)$$

u and
$$\nu$$
 is $\nabla \mathfrak{B}(\mu, \nu) = C_{\nu}^{-1} \circ C_{\mu}$.

$$\rho = \nabla u_{\sharp} e^{-u}$$
$$u : \mathbb{R}^d \to \mathbb{R} \text{ convex}$$

 ho_1 density -20 Conj. Gibbs Factor \mathfrak{P}_w Gibbs Factor \mathfrak{P}_u $\mathcal{N}(0,1)$ $\mathcal{N}(0,1)$ ρ_1 ρ_1 density density 10 -2-10-4 2 0

Estimate w

Conjugate Moment Measures

 $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

• Parameterize w with an input convex neural network (ICNN) $^{[1]}w_{\theta}$. Methodology:

• Use an optimal transport solver^[2] to estimate $\mathfrak{B}(\rho, e^{-w_{\theta}})$.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine Learning, pages 146–155. PMLR, 2017. [1]

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conference on Learning Representations, 2023. [2]

Estimate w when d > 1

Conjugate Moment Measures

 $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Methodology:

• Parameterize w with an input convex neural network (ICNN) $W_{\theta} \sim MLP$ with non negative weights + convex activation functions • Use an optimal transport solver^[2] to estimate $\mathfrak{B}(\rho, e^{-w_{\theta}})$.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine Learning, pages 146–155. PMLR, 2017. [1]

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conference on Learning Representations, 2023. [2]

Estimate w when d > 1

Conjugate Moment Measures

 $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Methodology: • Parameterize w with an input convex neural network (ICNN) w_{θ} . • Use an optimal transport solver^[2] to estimate $\mathfrak{B}(\rho, e^{-w_{\theta}})$.

From theory ...

 $\mathfrak{B}(\mu, \nu)$ is the solution of the dual objective:

$$\mathfrak{B}(\mu,\nu) \in \underset{f \in CVX(\mathbb{R}^d)}{\operatorname{arg\,inf}} \int_{\mathbb{R}^d} f \, \mathrm{d}\mu \, + \int_{\mathbb{R}^d} f^* \, \mathrm{d}\nu$$

where the f^* is the convex conjugate of f:

$$f^*(y) := \sup_{x \in \mathbb{R}^d} \langle x, y \rangle - f(x) = \langle x^*, y \rangle - f(x^*).$$

with $x^* = \nabla f^*(y)$ Danskin. Theorem^[1]

John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics, 14(4):641–664, 1966.

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conference on Learning Representations, 2023. [2]

Estimate w

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Methodology: • Parameterize w with an input convex neural network (ICNN) w_{θ} . • Use an optimal transport solver^[2] to estimate $\mathfrak{B}(\rho, e^{-w_{\theta}})$.

From theory ...

 $\mathfrak{B}(\mu,\nu)$ is the solution of the dual objective:

$$\mathfrak{B}(\mu,\nu) \in \underset{f \in CVX(\mathbb{R}^d)}{\operatorname{arg\,inf}} \int_{\mathbb{R}^d} f \, \mathrm{d}\mu \, + \int_{\mathbb{R}^d} f^* \, \mathrm{d}\nu$$

where the f^* is the convex conjugate of f:

$$f^*(y) := \sup_{x \in \mathbb{R}^d} \langle x, y \rangle - f(x) = \langle x^*, y \rangle - f(x^*).$$

with $x^* = \nabla f^*(y)$ **Danskin. Theorem**^[1]

John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics, 14(4):641–664, 1966.

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh International Conference on Learning Representations, 2023. 2

Estimate w

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

... To practice A surrogate MLP V_{ϕ} is used to approximate ∇w_{ρ}^* w_{θ} and V_{ϕ} are optimized using: $\mathscr{L}_{\mathsf{Monge}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} w_{\theta}(x_i) + \frac{1}{n} \sum_{i=1}^{n} \langle V_{\phi}(y_i), y_j \rangle - w_{\theta}(V_{\phi}(y_j))$ $\mathscr{L}_{\text{convex-dual}}(\phi) = \frac{1}{n} \sum_{j=1}^{n} \|V_{\phi}(y_j) - \nabla w_{\theta}^*(y_j)\|^2$ ^{J-1} Computed with a conjugate solver

Estimate *w* **/ Sample from** ρ

Algorithm: $w_0 := \frac{1}{2} \| \cdot \|^2$; $\forall t \ge 1$, $w_{t+1} := \mathfrak{B}(\rho, e^{-w_t})$

Conjugate Moment Measures

 $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Estimate *w* **/ Sample from** ρ

Algorithm: $w_0 := \frac{1}{2} \| \cdot \|^2$; $\forall t \ge 1$, $w_{t+1} := \mathfrak{B}(\rho, e^{-w_t})$

Estimate w with w_{θ}

Algorithm

Initialize w_{θ} such that $w_{\theta} \approx \frac{1}{2} \| \cdot \|^2$ while not converged do Draw *n* i.i.d samples $x_i \sim \rho$ Draw $y_1, \ldots, y_n \sim e^{-w_{\theta}}$ using LMC algorithm — $\mathcal{L}_{\theta} \leftarrow \frac{1}{n} \sum_{i=1}^{n} w_{\theta}(x_i) - \frac{1}{n} \sum_{i=1}^{n} w_{\theta}(\tilde{x}(y_i))$ Update w_{θ} with $\nabla \mathcal{L}_{\theta}$ end while

Sample from $e^{-w_{\theta}}$ using Langevin Monte Carlo (LMC

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

C)
$$x^{(k+1)} = x^{(k)} - \gamma \nabla w_{\theta}(x^{(k)}) + \sqrt{2\gamma} z^{(k)}, \ z^{(k)} \sim \mathcal{N}(0, I_d)$$

Estimate *w* **/ Sample from** ρ

Algorithm: $w_0 := \frac{1}{2} \| \cdot \|^2$; $\forall t \ge 1$, $w_{t+1} := \mathfrak{B}(\rho, e^{-w_t})$

Estimate w with w_{θ}

Algorithm

Initialize w_{θ} such that $w_{\theta} \approx \frac{1}{2} \| \cdot \|^2$ while not converged do Draw *n* i.i.d samples $x_i \sim \rho$ Draw $y_1, \ldots, y_n \sim e^{-w_{\theta}}$ using LMC algorit $\mathcal{L}_{\theta} \leftarrow \frac{1}{n} \sum_{i=1}^{n} w_{\theta}(x_i) - \frac{1}{n} \sum_{i=1}^{n} w_{\theta}(\tilde{x}(y_i))$ Update w_{θ} with $\nabla \mathcal{L}_{\theta}$ end while

Sample from $\rho \approx \nabla w_{\theta}^* {}_{\sharp} e^{-w_{\theta}}$

Sample from $e^{-w_{\theta}}$ using Langevin Monte Carlo (LM)

Transport using ∇w_{θ}^* with a gradient ascent algorithm $\nabla w_{\theta}^*(y) = \arg \sup \langle x, y \rangle - w_{\theta}(x)$

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Initialization
$$w_0 := \frac{1}{2} || \cdot ||^2$$

Sample from ρ
Sample from e^{-w_t}
One gradient step to estimate $\mathfrak{B}(\rho)$

C)
$$x^{(k+1)} = x^{(k)} - \gamma \nabla w_{\theta}(x^{(k)}) + \sqrt{2\gamma} z^{(k)}, \ z^{(k)} \sim \mathcal{N}(0, I_d)$$

2D Experiments

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$

 $w: \mathbb{R}^d \to \mathbb{R}$ convex

Cartoon Experiments d = 3072

Gibbs $\mathfrak{P}_{w_{\theta}}$ obtained from $\nabla w_{\theta} \sharp \rho$ Gibbs $\mathfrak{P}_{w_{\theta}}$ obtained from Langevin dynamics \approx

Conjugate $\nabla w_{\theta}^{*}(y) = \arg \sup_{x} \langle x, y \rangle - w(x)$

Generated images $\nabla w_{\theta}^* \sharp \mathfrak{P}_{w_{\theta}}$

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Transportation map $\nabla w_{\theta} = (\nabla w_{\theta}^*)^{-1}$

Data distribution ρ

Monge-Ampère equation

 $\rho(x) = e^{-\mathscr{E}_w(x)}$

Probability measures

$$\rho = \nabla w^*_{\sharp} e^{-w}$$

Conjugate Moment Measures

$$\rho = \nabla w^*_{\sharp} e^{-w}$$
$$w : \mathbb{R}^d \to \mathbb{R} \text{ convex}$$

Densities

 $\mathscr{E}_w(x) = w(\nabla w(x)) - \ln(\det H_w(x)) + \ln(C_w)$

Monge-Ampère equation

Probability measures

$$\rho = \nabla w^*_{\sharp} e^{-w}$$

Image reconstruction

Conjugate Moment Measures

$$\rho = \nabla w^*_{\sharp} e^{-w}$$
$$w : \mathbb{R}^d \to \mathbb{R} \text{ convex}$$

Densities

 $\rho(x) = e^{-\mathscr{E}_w(x)}$ $\mathscr{C}_{w}(x) = w(\nabla w(x)) - \ln(\det H_{w}(x)) + \ln(C_{w})$

Applications

Monge-Ampère equation

Probability measures

$$\rho = \nabla w^*_{\sharp} e^{-w}$$

Image reconstruction

Conjugate Moment Measures

$$\rho = \nabla w^*{}_{\sharp} e^{-w}$$
$$w : \mathbb{R}^d \to \mathbb{R} \text{ convex}$$

Densities

 $\rho(x) = e^{-\mathscr{E}_w(x)}$

 $\mathscr{E}_{w}(x) = w(\nabla w(x)) - \ln(\det H_{w}(x)) + \ln(C)$

Applications

Learn w when ρ is known up to a normalizing constant

In this work

- We introduce a new factorization $\rho = \nabla w^*_{\sharp} e^{-w} \star$
- We propose a method to estimate w when ρ is known either through samples or up to a normalizing constant
- We apply it to generative modeling

Next

- Extend theoretical results of \star (unicity of w?, relax assumptions)
- Scale the method to more challenging datasets

Thank You !

Estimate w

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$

$$w: \mathbb{R}^d \to \mathbb{R}$$
 convex

Conjugate Moment Measure Theorem

Let ρ be an **absolutely continuous** probability measure **supported on a compact, convex** set. There exists a convex function w such that $\rho = \nabla w^* \ddagger e^{-w} \bigstar$

Sketch of Proof Using $\nabla w \circ \nabla w^* = i_d$, \bigstar is equivalent to $\nabla w_{\sharp} \rho = e^{-w}$.

Conjugate Moment Mea

$$\rho = \nabla w^*{}_{\sharp} e^{-w}$$
$$w : \mathbb{R}^d \to \mathbb{R} \text{ convex}$$

 $\searrow \nabla w \text{ is the OT map from } \rho \text{ to } e^{-w}$

 \longrightarrow w is the Brenier potential $\mathfrak{B}(\rho, e^{-w})$ from ρ to e^{-w}

 \longrightarrow w is a fixed point of $v \rightarrow \mathfrak{B}(\rho, e^{-v})$

as		r	ρ	ς
22	U			J

Conjugate Moment Measure Theorem

Let ρ be an **absolutely continuous** probability measure **supported on a compact, convex** set. There exists a convex function w such that $\rho = \nabla w^* \ddagger e^{-w} \bigstar$

Conjugate Moment Mea

$$\rho = \nabla w^*{}_{\sharp} e^{-w}$$
$$w : \mathbb{R}^d \to \mathbb{R} \text{ convex}$$

 $\neg \nabla w$ is the OT map from ρ to e^{-w}

 \longrightarrow w is the Brenier potential $\mathfrak{B}(\rho, e^{-w})$ from ρ to e^{-w}

 \longrightarrow w is a fixed point of $v \rightarrow \mathfrak{B}(\rho, e^{-v})$

We show that G_{ρ}^{Ω} admits a fixed point v and w defined as $w(x) := \begin{cases} v(x) & \text{if } x \in \Omega \\ +\infty & \text{else} \end{cases}$ solves \bigstar .

as		r	ρ	ς
22	U			J

Schauder's fixed point Theorem Let $(X, \|.\|)$ be a Banach space and $\mathcal{M} \subset X$ is compact, has at least one fixed point.

In this proof

• $(X, \|.\|) = (C(\Omega), \|\|_{\infty})$

• $\mathcal{M} = \{f \in C(\Omega) \text{ such that } \forall x, y \in \Omega\}$ with R such that, $\Omega \subset \mathcal{B}(0,R) = \{f \in C(\Omega) \mid f \in \mathcal{M}(0,R)\}$

• $A = G_{\rho}^{\Omega} : v \to \mathfrak{B}(\rho, \mathfrak{P}_{v}^{\Omega})$ with $\mathfrak{P}_{v}^{\Omega}$:

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$ $w : \mathbb{R}^d \to \mathbb{R} \text{ convex}$

Let $(X, \|.\|)$ be a Banach space and $\mathcal{M} \subset X$ is compact, convex, and nonempty. Any continuous operator $A : \mathcal{M} \to \mathcal{M}$

$$\begin{aligned} &P_{2}, |f(x) - f(y)| \leq R ||x - y||_{2} \text{ and } f(0_{\mathbb{R}^{d}}) = 0 \\ &I_{1} \in \mathbb{R}^{d}, ||x||_{2} \leq R \\ &= \frac{1_{\Omega} e^{-v}}{\int_{\Omega} e^{-v}}. \end{aligned}$$

Schauder's fixed point Theorem has at least one fixed point.

In this proof $(X, \|.\|) = (C(\Omega), \|\|_{\infty})$

$$\mathcal{M} = \{ f \in C(\Omega) \text{ such that } \forall x, y \in \Omega, |f(x) - f(y)| \leq R ||x - y||_2 \text{ and } f(0_{\mathbb{R}^d}) = 0 \}$$

with R such that, $\Omega \subset \mathcal{B}(0, R) = \{ x \in \mathbb{R}^d, ||x||_2 \leq R \}$
 $A = G_{\rho}^{\Omega} : v \to \mathfrak{B}(\rho, \mathfrak{P}_{v}^{\Omega}) \text{ with } \mathfrak{P}_{v}^{\Omega} = \frac{1_{\Omega} e^{-v}}{\int_{\Omega} e^{-v}}.$

 \mathcal{M} is a non-empty, compact, convex set of $X \neq \mathcal{A}$ (Arzela-Ascoli theorem for compactness) $A: \mathscr{M} \to \mathscr{M} \quad \text{The OT map } \nabla \mathfrak{B}(\rho, \mathfrak{P}_v^{\Omega}) \text{ transports } \rho \text{ on } \mathfrak{P}_v^{\Omega} \text{ supported on } \Omega \subset \mathscr{B}(0, R) \implies \|\nabla \mathfrak{B}(\rho, \mathfrak{P}_v^{\Omega})\| \leq R$ $\implies \mathfrak{B}(\rho, \mathfrak{P}_{v}^{\Omega}) \text{ is } R \text{ Lipschitz}$ $A = G_{\rho}^{\Omega} \text{ is continuous } Based \text{ on the Theorem: } \nu_n \xrightarrow{} \nu \implies \mathfrak{B}(\rho, \nu_n) \xrightarrow{} \mathfrak{B}(\rho, \nu)$

Conjugate Moment Measures $\rho = \nabla w^*_{\sharp} e^{-w}$ $w: \mathbb{R}^d \to \mathbb{R}$ convex

Let $(X, \|.\|)$ be a Banach space and $\mathcal{M} \subset X$ is compact, convex, and nonempty. Any continuous operator $A : \mathcal{M} \to \mathcal{M}$

