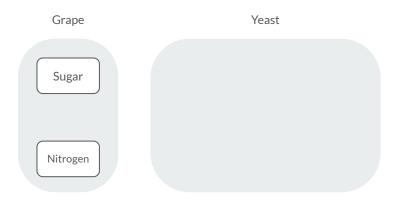
June 2025 12th French Biennial of Applied and Industrial Mathematics

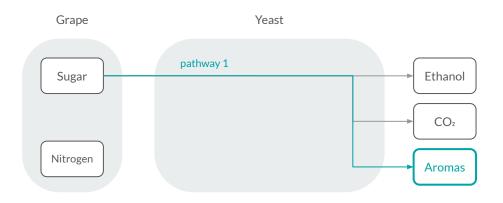
Understanding, modeling and controlling wine fermentation

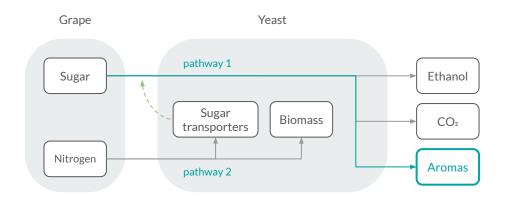
Agustín G. Yabo · William Dangelser · Céline Casenave

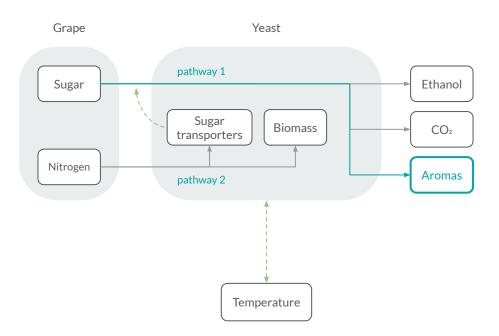
MISTEA, Universite Montpellier, INRAE, Institut Agro, Montpellier, France

Introduction



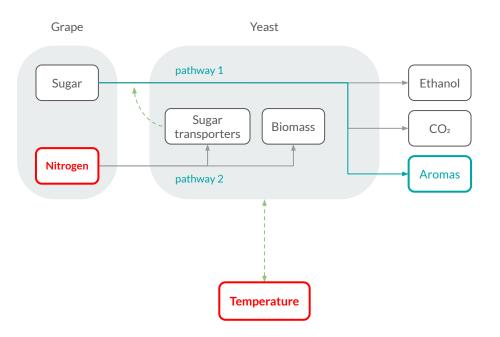






Objectives:

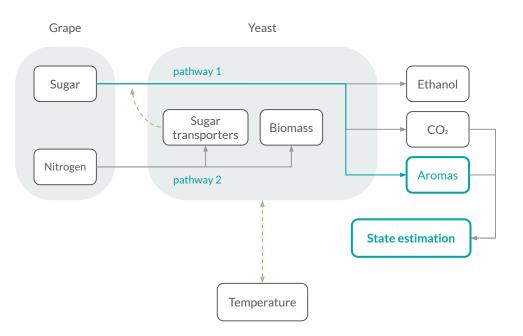
- Understand and model the impact of **nitrogen** and **temperature** on **aroma** synthesis.



Objectives:

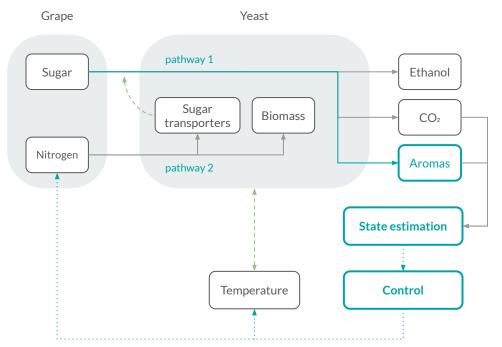
- Understand and model the impact of **nitrogen** and **temperature** on **aroma** synthesis.

- Estimate internal states from measurements.



Objectives:

- Understand and model the impact of **nitrogen** and **temperature** on **aroma** synthesis.
- Estimate internal states from measurements.
- Develop real-time **control** strategies.

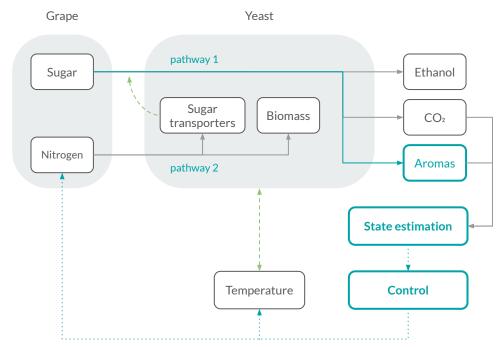


Objectives:

- Understand and model the impact of **nitrogen** and **temperature** on **aroma** synthesis.
- Estimate internal states from measurements.
- Develop real-time **control** strategies.

State of the art

- Lack of mechanistic models.
- Lack of comprehension of the biological process.
- Almost **no control theory** in the past.



Mechanistic modeling

Malherbe, S. *et al.* (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnology and bioengineering.

Malherbe, S. *et al.* (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnology and bioengineering.

$$\begin{split} \dot{S} &= -XN_{ST}(N_0 - N, X, T)\nu_{ST}(S, E, T) \quad \text{(Sugar)} \\ \dot{N} &= -X\nu_N(N, E, T) \quad \text{(Nitrogen)} \\ \dot{X} &= k_1(T)X\left[1 - \frac{X}{X_{\max}(N_0)}\right] \quad \text{(Biomass)} \\ \dot{E} &= -\mu \dot{S} \quad \text{(Ethanol)} \end{split}$$

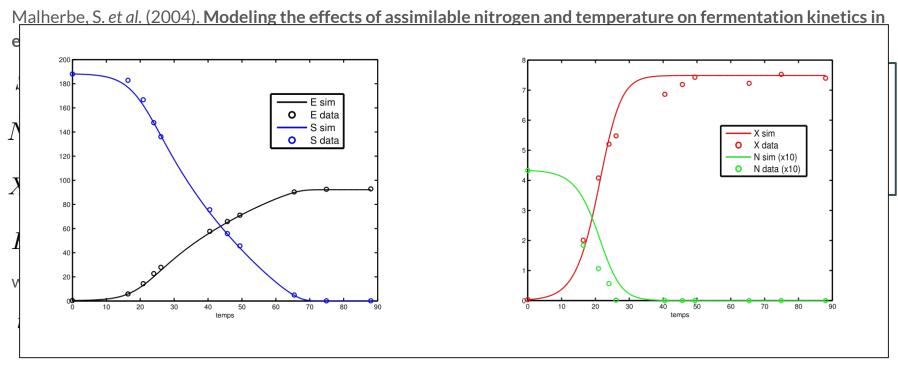
 $\mathrm{CO}_2(t) =$

$$\mathcal{D}_2(t) = E(t), \forall t \ge 0$$

(Ethanol-inhibited glucose absorption)

Malherbe, S. *et al.* (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnology and bioengineering.

$$\begin{split} \dot{S} &= -XN_{ST}(N_0 - N, X, T)\nu_{ST}(S, E, T) \quad \text{(Sugar)} \\ \dot{N} &= -X\nu_N(N, E, T) \quad \text{(Nitrogen)} \\ \dot{X} &= k_1(T)X\left[1 - \frac{X}{X_{\max}(N_0)}\right] \quad \text{(Biomass)} \\ \dot{E} &= -\mu \dot{S} \quad \text{(Ethanol)} \quad CO_2(t) = E(t), \forall t \ge 0 \\ \text{where:} \\ \nu_{ST}(S, E, T) &= \frac{k_2(T)S}{K_S + S(1 + K_{Si}E^{\alpha_S})} \quad \nu_N(N, E, T) = \frac{k_3(T)N}{K_S + N(1 + K_{Ni}E_N^{\alpha})} \end{split}$$



(Ethanol-inhibited glucose absorption)

Main fermentation kinetics

$$\dot{S} = -X \nu_{st}(S, E, N_{st}, T), \qquad (i)$$

$$\dot{N} = -\nu_N(N, E, A, T)X, \qquad (i)$$

$$\dot{X} = \mu(N_{in}, E, A, T)X, \qquad (i)$$

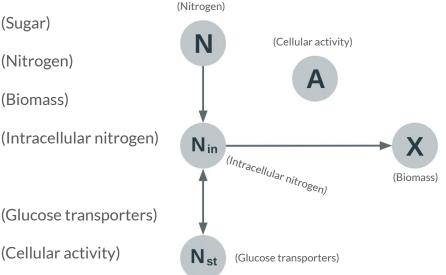
$$\dot{N}_{in} = \nu_N(N, E, A, T) - \frac{1}{Y_{N_{st}}}\nu_{tr}(N_{in}, N_{st}, T) \qquad (i)$$

$$-(N_{in} + \alpha_1) \mu(N_{in}, E, A, T), \qquad (i)$$

$$\dot{N}_{st} = \nu_{tr}(N_{in}, N_{st}, T) - N_{st} \mu(N_{in}, E, A, T), \qquad (i)$$

$$\dot{A} = \mu(N_{in}, E, A, T) (A^* - A) - \kappa(T)A. \qquad (i)$$

$$CO_2 = E = (S(0) - S)/2.17$$



Beaudeau et al. (2023). Dynamic modelling of the effects of assimilable nitrogen addition on aroma synthesis during wine fermentation. Chemical Engineering Transactions.

Temperature-dependent reaction rates

$$\nu_{st}(S, E, N_{st}, T) \doteq k_2(T) N_{st} \frac{S}{K_S + S(1 + K_{Si} E^{\alpha_S})},$$

$$\nu_N(N, E, T) \doteq k_3(T) \frac{N}{K_N + N(1 + K_{Ni}E^{\alpha_N})}$$

(Nitrogen assimilation rate)

$$\nu_{\rm tr}(N_{in}, N_{st}, T) \doteq k_{N_{st}}(T) \left(1 - \frac{Q_0}{N_{in}}\right)^+ - k_{d,N_{st}} \left(\frac{N_{st}}{k_{N_{st}} + N_{st}}\right), \quad \text{(Sugar transformed of the set of the se$$

(Sugar transporter synthesis rate)

$$\mu(N_{in}, E, A, T) \doteq k_1(T) \left(1 - \frac{N_{in,0}}{N_{in}}\right)^+ \left(1 - \frac{E}{E_{\max}}\right)^+ A$$

(Yeast growth rate)

Temperature-dependent reaction rates

$$\nu_{st}(S, E, N_{st}, T) \doteq k_{2}(T) N_{st} \frac{S}{K_{S} + S(1 + K_{Si}E^{\alpha_{S}})},$$

$$\nu_{N}(N, E, T) \doteq k_{3}(T) \frac{N}{K_{N} + N(1 + K_{Ni}E^{\alpha_{N}})}$$

$$\nu_{N}(N, E, T) \doteq k_{3}(T) \frac{N}{K_{N} + N(1 + K_{Ni}E^{\alpha_{N}})}$$

$$\nu_{tr}(N_{in}, N_{st}, T) \doteq k_{N_{st}}(T) \left(1 - \frac{Q_{0}}{N_{in}}\right)^{+} - k_{d,N_{st}} \left(\frac{N_{st}}{k_{N_{st}} + N_{st}}\right), \quad \text{(Sugar transporter synthesis rate)}$$

$$\mu(N_{in}, E, A, T) \doteq k_{1}(T) \left(1 - \frac{N_{in,0}}{N_{in}}\right)^{+} \left(1 - \frac{E}{E_{\max}}\right)^{+} A \quad \text{(Yeast growth rate)}$$

Heuristic model for synthesis of aroma compounds

The model is based on the relationship between sugar consumption and production of aromas

$$\frac{dAroma}{dt} = -Y_{aroma} \frac{dS}{dt}$$

The conversion yield changes when the nitrogen is added:

$$\ln(Y_{aroma,1}) = D_1 + D_2 N_0 + D_3 T + D_4 N_0^2 + D_5 T^2 + D_6 N_0 T$$
 (before nitrogen addition)

$$\ln(Y_{aroma,2}) = D_7 + D_8(N_0 + N_{ad}) + D_9T + D_{10}(N_0 + N_{ad})^2 + D_{11}T^2 + D_{12}(N_0 + N_{ad})T$$

(after nitrogen

addition)

Heuristic model for synthesis of aroma compounds

The model is based on the relationship between sugar consumption and production of aromas

$$\frac{dAroma}{dt} = -Y_{aroma}\frac{dS}{dt}$$

The conversion yield changes when the nitrogen is added:

(before nitrogen addition)

(after nitrogen

addition)

$$\ln(Y_{aroma,2}) = D_7 + D_8(N_0 + N_{ad}) + D_9T + D_{10}(N_0 + N_{ad})^2 + D_{11}T^2 + D_{12}(N_0 + N_{ad})T$$

 $\ln(Y_{aroma,1}) = D_1 + D_2N_0 + D_3T + D_4N_0^2 + D_5T^2 + D_6N_0T$

20

Heuristic model for synthesis of aroma compounds

The model is based on the relationship between sugar consumption and production of aromas

$$\frac{dAroma}{dt} = -Y_{aroma}\frac{dS}{dt}$$

The conversion yield changes when the nitrogen is added:

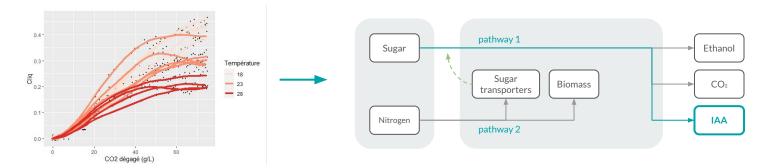
$$\ln(Y_{aroma,1}) = D_1 + D_2 N_0 + D_3 T + D_4 N_0^2 + D_5 T^2 + D_6 N_0 T$$

$$\ln(Y_{aroma,2}) = D_7 + D_8(N_0 + N_{ad}) + D_9T + D_{10}(N_0 + N_{ad})^2 + D_{11}T^2 + D_{12}(N_0 + N_{ad})T$$

(after nitrogen addition)

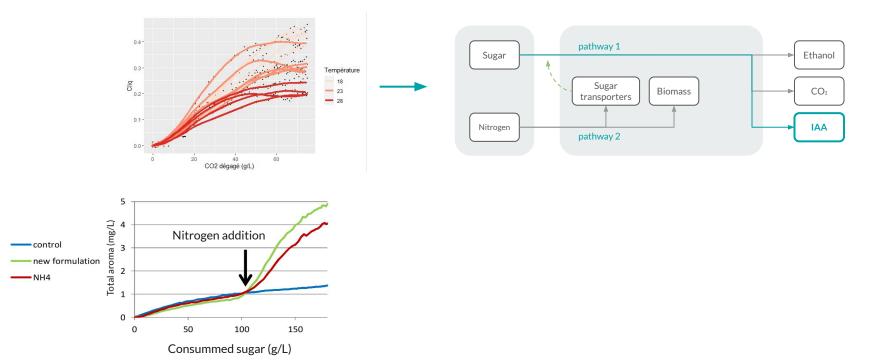
Mechanistic modelling of isoamyl acetate synthesis

The objective: to develop mechanistic models of aroma synthesis based on the experimental data



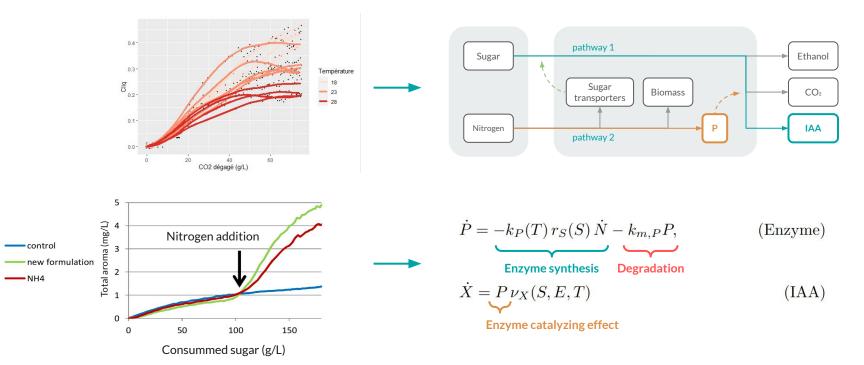
Mechanistic modelling of isoamyl acetate synthesis

The objective: to develop mechanistic models of aroma synthesis based on the experimental data

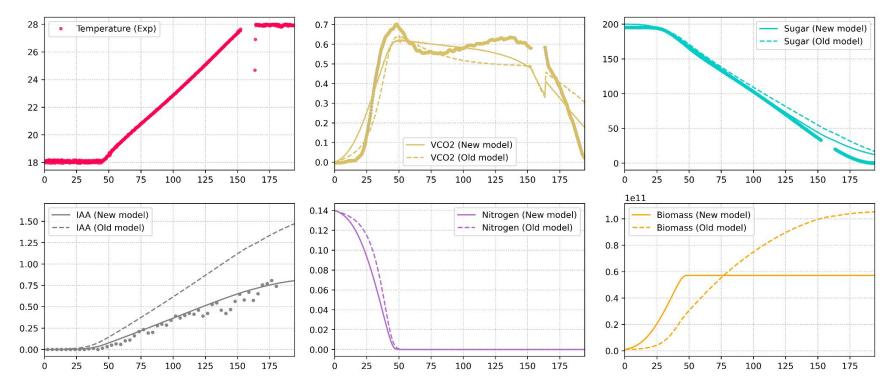


Mechanistic modelling of isoamyl acetate synthesis

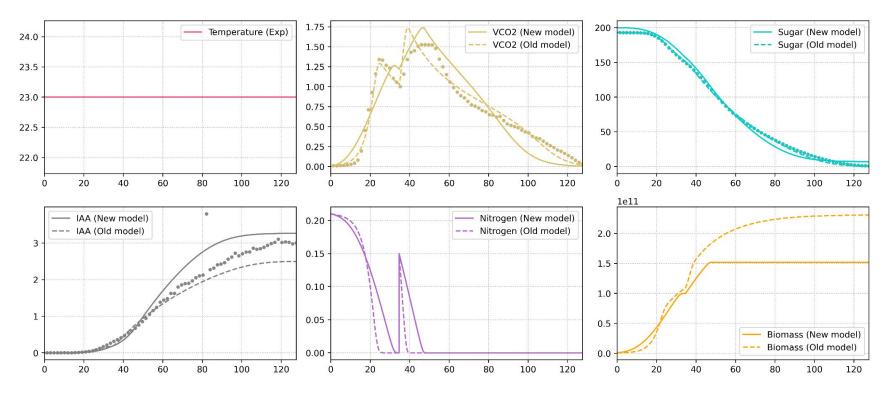
The objective: to develop mechanistic models of aroma synthesis based on the experimental data



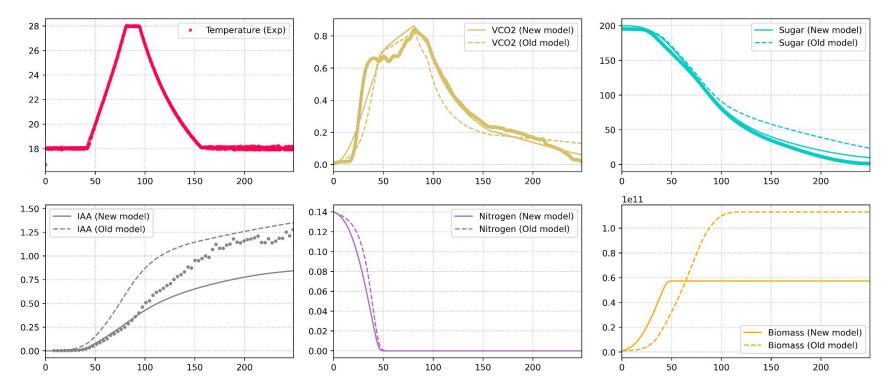
Simulations of mechanistic model of IAA



Simulations of mechanistic model of IAA



Simulations of mechanistic model of IAA



Understanding regulation of the ratio ACoA/CoA

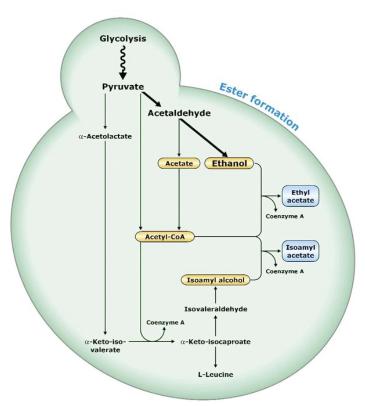
 $IAOH + ACoA \stackrel{Enzyme}{\longrightarrow} IAA + CoA$

Hypotheses:

- Since IAOH does not limit the reaction, ACoA is the limiting quantity.

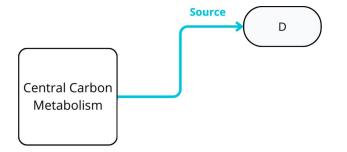
Extend the model with ACoA

- Yeasts tries to keep a ratio ACoA/CoA "optimal". The reaction tries to get rid of the excess of ACoA to clean the cells.



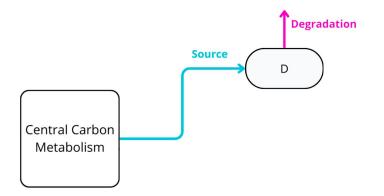
Modeling the production of IAA as a product of the excess of ACoA

 $\dot{D} = k_D(T).\phi(S).(-\dot{S})$



Modeling the production of IAA as a product of the excess of ACoA

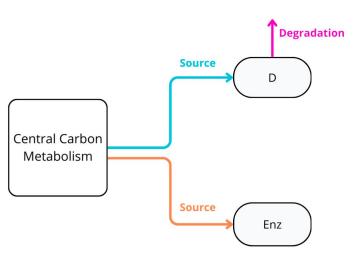
 $\dot{D} = k_D(T).\phi(S).(-\dot{S}) - \eta(T).D$



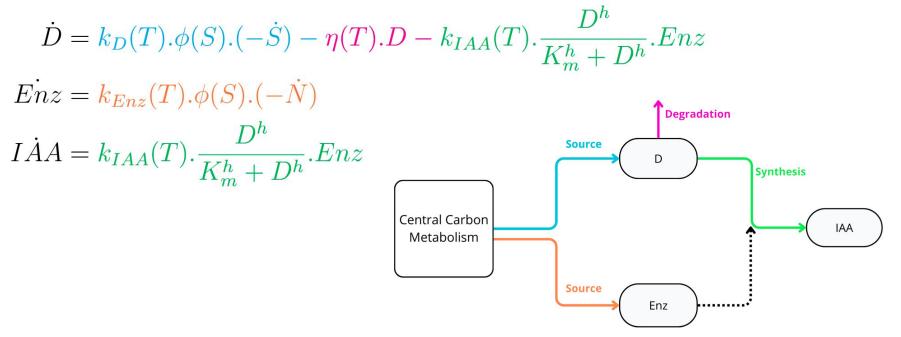
Modeling the production of IAA as a product of the excess of ACoA, catalyzed by the enzymes ATF1p/ATF2p,

 $\dot{D} = k_D(T).\phi(S).(-\dot{S}) - \eta(T).D$

 $\dot{Enz} = k_{Enz}(T).\phi(S).(-\dot{N})$



Modeling the production of IAA as a product of the excess of ACoA



Comparison of models (simple vs ACoA/CoA)

Relative error for simple model

3.5	2.0	15.1	7.0	21.5	14.7	1.1	5.4	4.2	4.5	4.4	1.8	3.6	0.3	28 1	2.8	6.6	5.1	1.2	1.2	9.4	13.0	15.4	11.8	24.6	29.8	9.5	2.4	18.2	12.8	23.8	2.8	9.2	14.9	5.8	3.5
- T		-		<u> </u>						1	1		1				1								1							1			
2	9	6	0	1	9	-	N	m	4	m	4	5		00	H	2	0	-	N	m	4	25	9		00	6	0	-	N	m	4	5	9		00

Relative error for ACoA/CoA model

2.9	2.4	7.4	0.6	0.5	14.9	0.4	5.1	8.4	1.9	4.0	1.5	1.1	0.6	2.5	1.0	0.8	15.1	6.0	0.9	6.8	12.3	9.6	4.5	17.0	24.8	1.6	4.3	16.7	10.7	18.9	0.6	5.9	25.3	6.2	3.2
2	9	- 6	- 01	67 -	- 92	1-	2 -	Ч	4 -	13 -	14 -	15 -	- 1	8	- 11	12 -	20 -	21 -	22 -	23 -	24 -	25 -	26 -	27 -	28 -	29 -	30 -	31 -	32 -	33 -	34 -	35 -	36 -	37 -	38 -

Promising approach but still mixed results

Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

 $P_f(\dot{CO}_2) = \tilde{P}_a(CO_2, T)\dot{T} + P_w(T - T_e) + P_e(CO_2, \dot{CO}_2, T) + Q_c$

Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

$$P_{f}(\dot{CO}_{2}) = \tilde{P}_{a}(CO_{2},T)\dot{T} + P_{w}(T-T_{e}) + P_{e}(CO_{2},\dot{CO}_{2},T) + Q_{c}$$
Refrigeration system
Fermentation
Kall
Evaporation

Colombié, S., Malherbe, S., & Sablayrolles, J. M. (2007). Modeling of heat transfer in tanks during wine-making fermentation. Food control, 18(8), 953-960.

Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

$$P_{f}(\dot{CO}_{2}) = \tilde{P}_{a}(CO_{2},T)\dot{T} + P_{w}(T-T_{e}) + P_{e}(CO_{2},\dot{CO}_{2},T) + Q_{c} \qquad \text{Refrigeration system}$$
Fermentation Accumulation Wall Evaporation

We define the function:

$$v_{T_{\rm nc}}(CO_2, \dot{CO}_2, T_{\rm nc}) = \frac{1}{\tilde{P}_a(CO_2, T_{\rm nc})} \left(P_f(\dot{CO}_2) - P_w(T_{\rm nc} - T_e) - P_e(CO_2, \dot{CO}_2, T_{\rm nc}) \right)$$

Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

We define the function:

$$v_{T_{\rm nc}}(CO_2, \dot{CO}_2, T_{\rm nc}) = \frac{1}{\tilde{P}_a(CO_2, T_{\rm nc})} \left(P_f(\dot{CO}_2) - P_w(T_{\rm nc} - T_e) - P_e(CO_2, \dot{CO}_2, T_{\rm nc}) \right)$$

Thus, the temperature is a new state of the system governed by the equation:

$$\dot{T} = v_{T_{\rm nc}}(CO_2, \dot{CO}_2, T) - \frac{Q_c}{\tilde{P}_a(CO_2, T)}$$

Colombié, S., Malherbe, S., & Sablayrolles, J. M. (2007). Modeling of heat transfer in tanks during wine-making fermentation. Food control, 18(8), 953-960.

Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

$$P_{f}(\dot{CO}_{2}) = \tilde{P}_{a}(CO_{2},T)\dot{T} + P_{w}(T-T_{e}) + P_{e}(CO_{2},\dot{CO}_{2},T) + Q_{c}$$
 Refrigeration system
Fermentation Kall Evaporation

We define the function:

$$v_{T_{\rm nc}}(CO_2, \dot{CO}_2, T_{\rm nc}) = \frac{1}{\tilde{P}_a(CO_2, T_{\rm nc})} \left(P_f(\dot{CO}_2) - P_w(T_{\rm nc} - T_e) - P_e(CO_2, \dot{CO}_2, T_{\rm nc}) \right)$$

Thus, the temperature is a new state of the system governed by the equation:

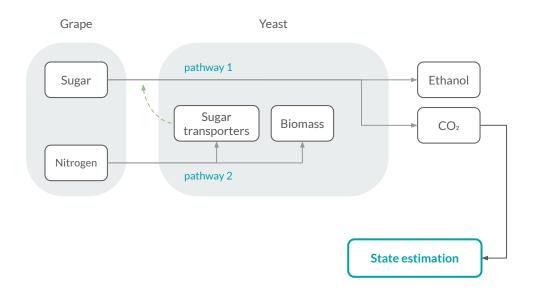
$$\dot{T} = v_{T_{\rm nc}}(CO_2, \dot{CO_2}, T) - \frac{Q_c}{\tilde{P}_a(CO_2, T)}$$

The temperature regulation scheme is subject to the following constraints:

$$Q_c(t) > 0$$
 $18^{\circ}C \le T \le 28^{\circ}C$ $\left|\frac{\mathrm{d}T}{\mathrm{d}CO_2}\right| \le \Delta T_{\mathrm{max}}$

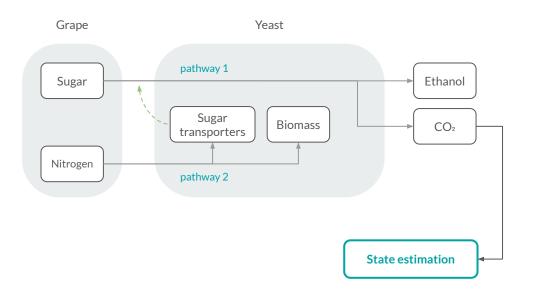
The state estimation problem

Features of the fermentation process:



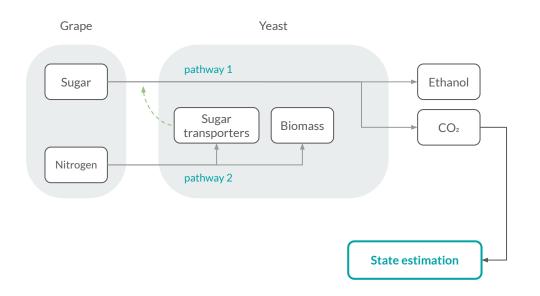
Features of the fermentation process:

- We can easily measure **CO₂** through the weight difference.



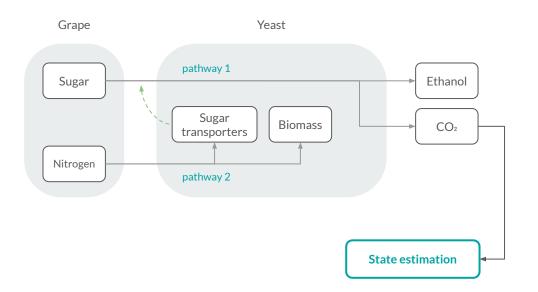
Features of the fermentation process:

- We can easily measure **CO₂** through the weight difference.
- Biomass and nitrogen measurements require manual sampling.



Features of the fermentation process:

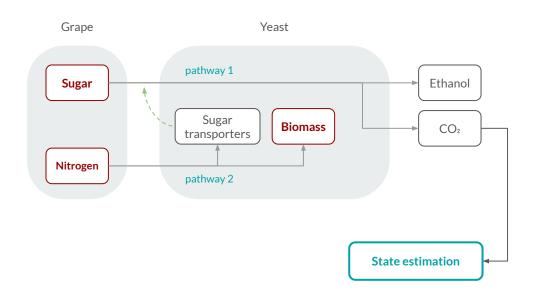
- We can easily measure **CO₂** through the weight difference.
- Biomass and nitrogen measurements require manual sampling.
- **Low**-frequency sampling time (= **high** computation time).



Features of the fermentation process:

- We can easily measure **CO₂** through the weight difference.
- Biomass and nitrogen measurements require manual sampling.
- **Low**-frequency sampling time (= **high** computation time).

Objective: estimate the concentrations of sugar, nitrogen and biomass from **CO₂** measurements



The simple case: Malherbe et al. model

Malherbe, S. *et al.* (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnology and bioengineering.

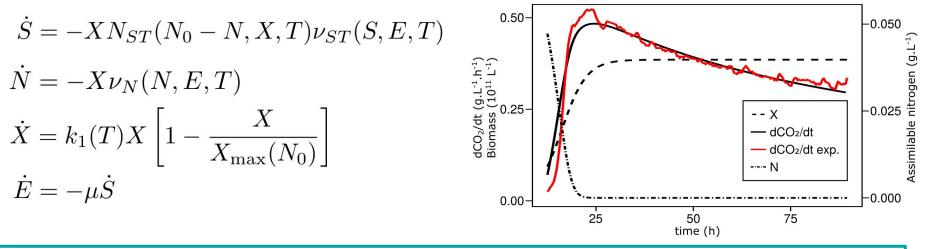
$$\begin{split} \dot{S} &= -XN_{ST}(N_0 - N, X, T)\nu_{ST}(S, E, T) \\ \dot{N} &= -X\nu_N(N, E, T) \\ \dot{X} &= k_1(T)X \left[1 - \frac{X}{X_{\max}(N_0)} \right] \\ \dot{E} &= -\mu \dot{S} \\ \text{where:} \\ \nu_{ST}(S, E, T) &= \frac{k_2(T)S}{K_S + S(1 + K_{Si}E^{\alpha_S})} \\ \end{split}$$

(Ethanol-inhibited glucose absorption)

46

The simple case: Malherbe et al. model

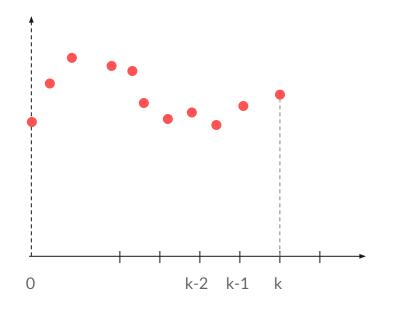
Malherbe, S. *et al.* (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnology and bioengineering.



Proposition 1: Under isothermal conditions (T constant), for any $0 \le t_1 < t_2$, System [1]-[4] is observable over $[t_1, t_2]$. That is, for any two trajectories of [1]-[4] with initial conditions such that $(S_0, N_0, X_0,), (\tilde{S}_0, \tilde{N}_0, \tilde{X}_0) \in \Omega, E_{|[t_1, t_2]} \equiv \tilde{E}_{|[t_1, t_2]}$ implies $(S_0, N_0, X_0) = (\tilde{S}_0, \tilde{N}_0, \tilde{X}_0)$.

Given the state $\xi = (S, N, X, E)$ and the dynamics:

 $\dot{\xi} = f(\xi)$ $\mathbf{y} = E + v$

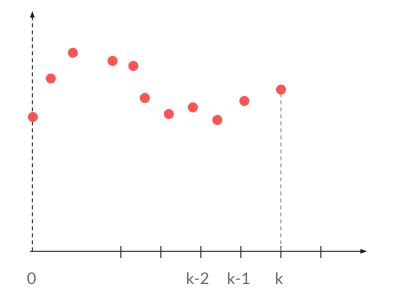


Given the state $\xi = (S, N, X, E)$ and the dynamics:

 $\dot{\xi} = f(\xi)$ $\mathbf{y} = E + v$

with initial conditions in $\xi_0 \in \Omega'_0 := \Omega_0 \times \{0\}$ with $\Omega_0 = \{(S_0, N_0, X_0) : 0 \le S_0, 0 \le N_0 \le 1,$

$$0 \le X_0 \le X_{\max}(N_0)\}$$



Given the state $\xi = (S, N, X, E)$ and the dynamics:

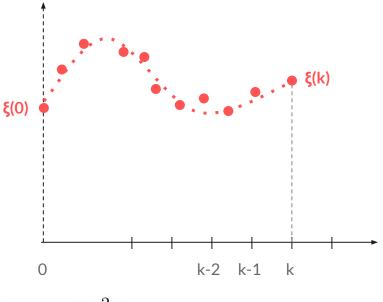
 $\dot{\xi} = f(\xi)$ $\mathbf{y} = E + v$

with initial conditions in $\xi_0 \in \Omega'_0 := \Omega_0 \times \{0\}$ with

$$\Omega_0 = \{ (S_0, N_0, X_0) : 0 \le S_0, 0 \le N_0 \le 1, \\ 0 \le X_0 \le X_{\max}(N_0) \}$$

The Full Information Estimation problem is to solve the optimization problem:

$$\underset{\xi_0 \in \Omega'_0}{\operatorname{argmin}} J_k(\xi_0) := \alpha |\hat{\xi}^{k-1}(0) - \xi_0|^2 + \int_0^{T_k} |\mathbf{y}(s) - y_{\xi_0}(s)|^2 ds$$



Given the state $\xi = (S, N, X, E)$ and the dynamics:

 $\dot{\xi} = f(\xi)$ $\mathbf{y} = E + v$

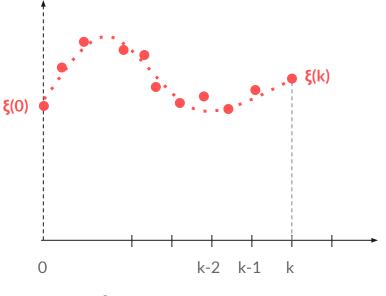
with initial conditions in $\xi_0 \in \Omega'_0 := \Omega_0 \times \{0\}$ with

$$\Omega_0 = \{ (S_0, N_0, X_0) : 0 \le S_0, 0 \le N_0 \le 1, \\ 0 \le X_0 \le X_{\max}(N_0) \}$$

The Full Information Estimation problem is to solve the optimization problem:

$$\underset{\xi_0 \in \Omega'_0}{\operatorname{argmin}} J_k(\xi_0) := \alpha |\hat{\xi}^{k-1}(0) - \xi_0|^2 + \int_0^{T_k} |\mathbf{y}(s) - y_{\xi_0}(s)|^2 ds$$

At each time instant, we take into account all the data.



FIE convergence result

We can obtain a soft convergence result based on a reformulation of the classical MHE globally asymptotically stable convergence theorems:

FIE convergence result

We can obtain a soft convergence result based on a reformulation of the classical MHE globally asymptotically stable convergence theorems:

Proposition 5: Under the above assumptions, there exists a \mathcal{K} -class function ω such that

$$|\xi(t) - \hat{\xi}^k(t)| \le \omega(\|v\|_{L^2(0,T_k)}), \quad \forall t \in [0,T_k]$$

In particular, $\xi = \hat{\xi}^k$ on $[0, T_k]$ if v = 0. Furthermore, if $\|v\|_{L^2(T_k, +\infty)} \to 0$ as $k \to 0$, then $\hat{\xi}^k(0) \to \xi_0$.

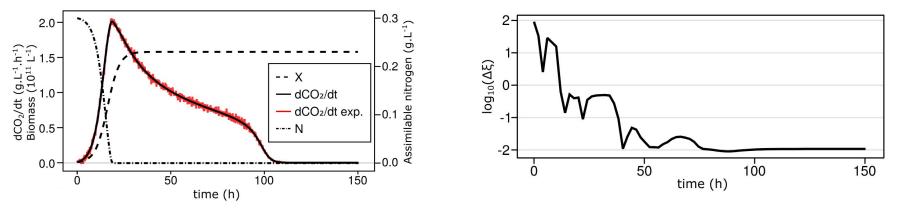
FIE convergence result

We can obtain a soft convergence result based on a reformulation of the classical MHE globally asymptotically stable convergence theorems:

Proposition 5: Under the above assumptions, there exists a \mathcal{K} -class function ω such that

$$|\xi(t) - \hat{\xi}^k(t)| \le \omega(\|v\|_{L^2(0,T_k)}), \quad \forall t \in [0,T_k]$$

In particular, $\xi = \hat{\xi}^k$ on $[0, T_k]$ if v = 0. Furthermore, if $\|v\|_{L^2(T_k, +\infty)} \to 0$ as $k \to 0$, then $\hat{\xi}^k(0) \to \xi_0$.



The control problem

Minimize total energy consumption:

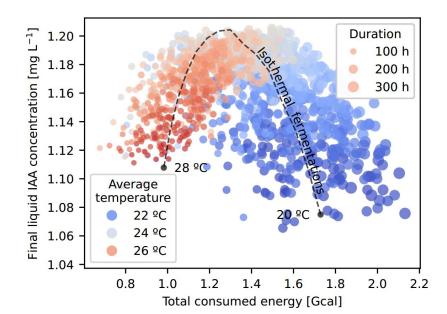
$$J_1 = Q_T = \int_0^{t_f} Q_c(t) \, dt$$

$$J_2 = IAA_{liq}(t_f)$$

Minimize total energy consumption:

$$J_1 = Q_T = \int_0^{t_f} Q_c(t) \, dt$$

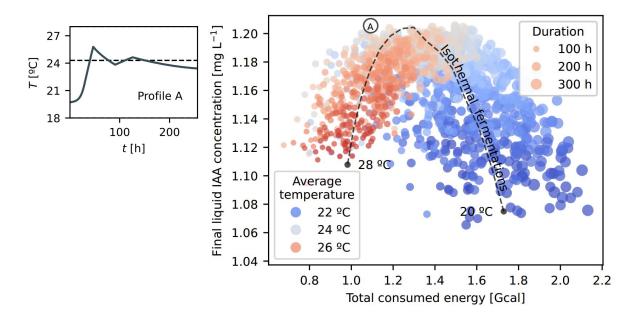
$$J_2 = IAA_{liq}(t_f)$$



Minimize total energy consumption:

$$J_1 = Q_T = \int_0^{t_f} Q_c(t) \, dt$$

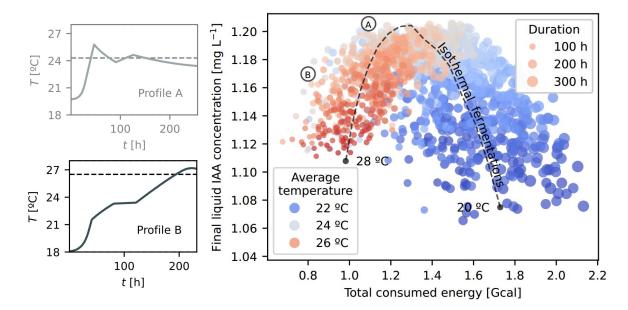
$$J_2 = IAA_{liq}(t_f)$$



Minimize total energy consumption:

$$J_1 = Q_T = \int_0^{t_f} Q_c(t) \, dt$$

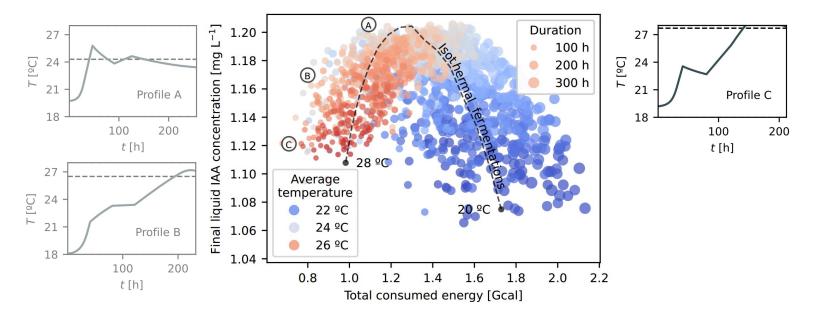
$$J_2 = IAA_{liq}(t_f)$$



Minimize total energy consumption:

$$J_1 = Q_T = \int_0^{t_f} Q_c(t) \, dt$$

$$J_2 = IAA_{liq}(t_f)$$

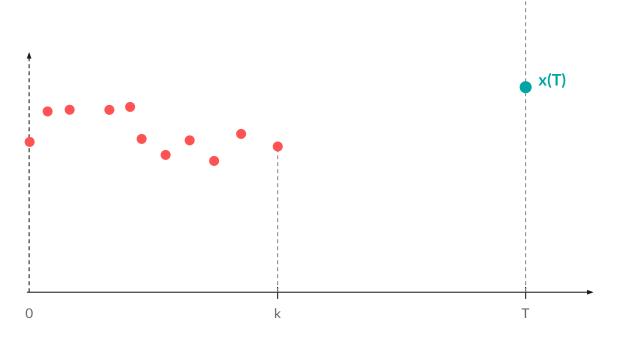


The approach can easily include:

- Complex nonlinear dynamics
- Complex cost function
- Complex constraints

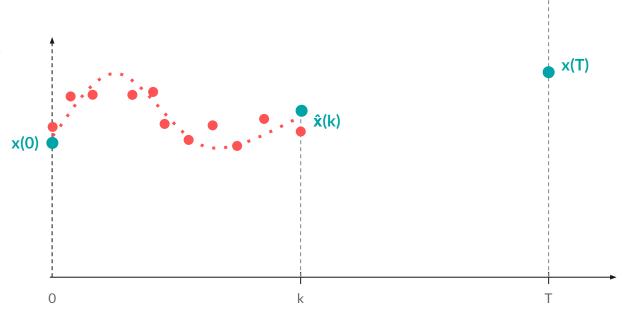
The approach can easily include:

- Complex **nonlinear dynamics**
- Complex cost function
- Complex constraints



The approach can easily include:

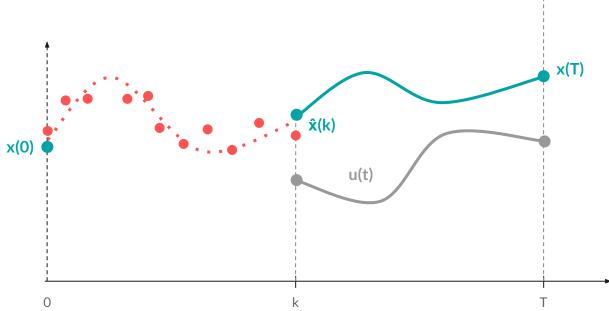
- Complex **nonlinear dynamics**
- Complex cost function
- Complex constraints



The approach can easily include:

- Complex **nonlinear dynamics**
- Complex cost function
- Complex constraints

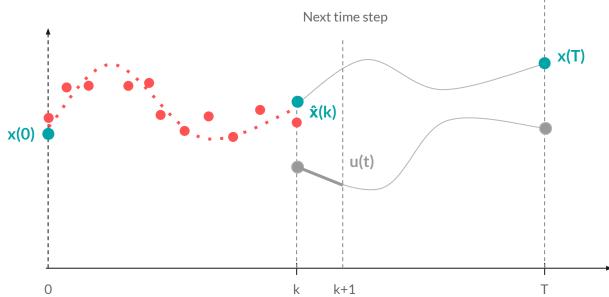
 $\min_{u(t)\in\mathcal{U}}J(u(t),\hat{x}(t),\Sigma)$



The approach can easily include:

- Complex **nonlinear dynamics**
- Complex cost function
- Complex constraints

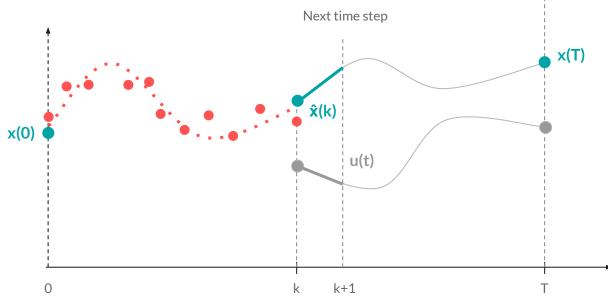
 $\min_{u(t)\in\mathcal{U}}J(u(t),\hat{x}(t),\Sigma)$



The approach can easily include:

- Complex **nonlinear dynamics**
- Complex cost function
- Complex constraints

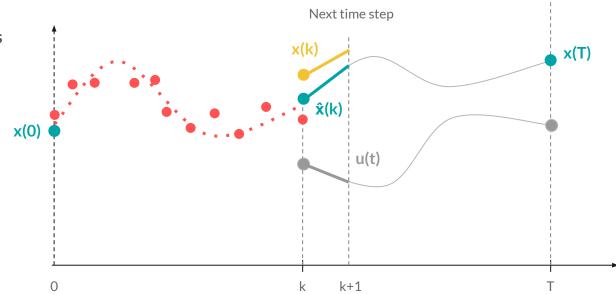
 $\min_{u(t)\in\mathcal{U}}J(u(t),\hat{x}(t),\Sigma)$



The approach can easily include:

- Complex **nonlinear dynamics**
- Complex cost function
- Complex constraints

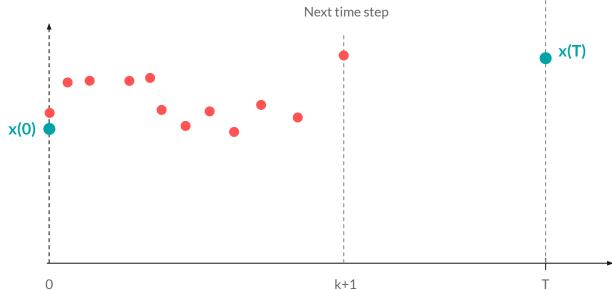
 $\min_{u(t)\in\mathcal{U}}J(u(t),\hat{x}(t),\Sigma)$



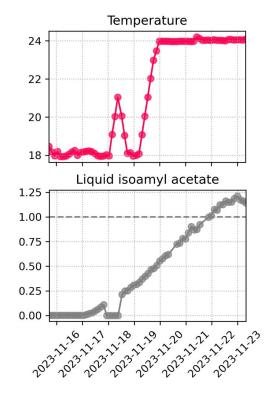
The approach can easily include:

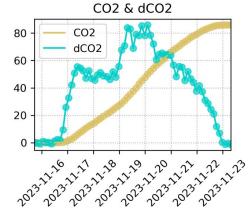
- Complex **nonlinear dynamics**
- Complex cost function
- Complex constraints

 $\min_{u(t)\in\mathcal{U}}J(u(t),\hat{x}(t),\Sigma)$



Experimental results



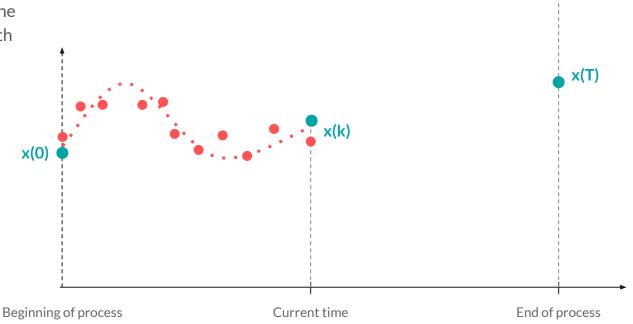


Experimental 100L fermenter

Campo, P. J., & Morari, M. (1987, June). Robust model predictive control. In 1987 American control conference. IEEE.

In this approach, we parametrize the parametric/system uncertainty with a set of models:

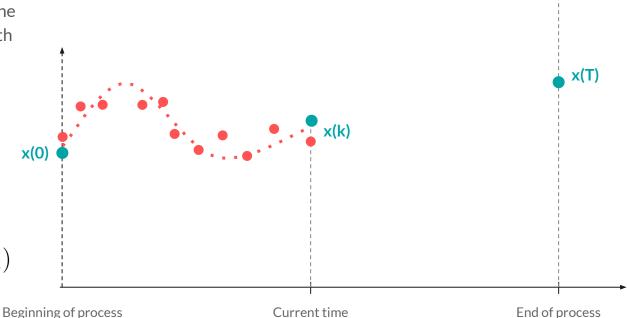
$$\Sigma = \{\Sigma_1, \ldots, \Sigma_n\}$$



In this approach, we parametrize the parametric/system uncertainty with a set of models:

 $\Sigma = \{\Sigma_1, \ldots, \Sigma_n\}$

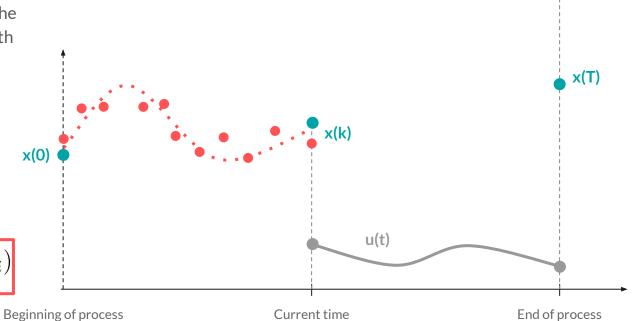
At each iteration, the algorithm calculates the optimal control that minimizes the cost function:



In this approach, we parametrize the parametric/system uncertainty with a set of models:

 $\Sigma = \{\Sigma_1, \ldots, \Sigma_n\}$

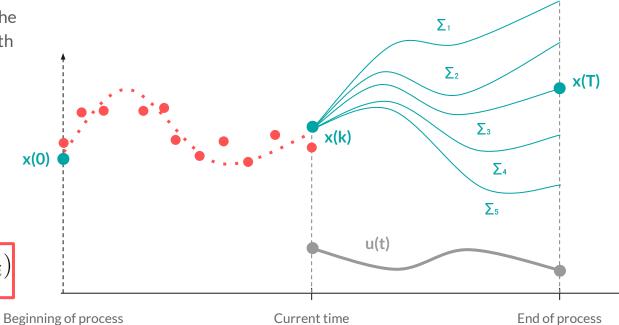
At each iteration, the algorithm calculates the optimal control that minimizes the cost function:



In this approach, we parametrize the parametric/system uncertainty with a set of models:

 $\Sigma = \{\Sigma_1, \ldots, \Sigma_n\}$

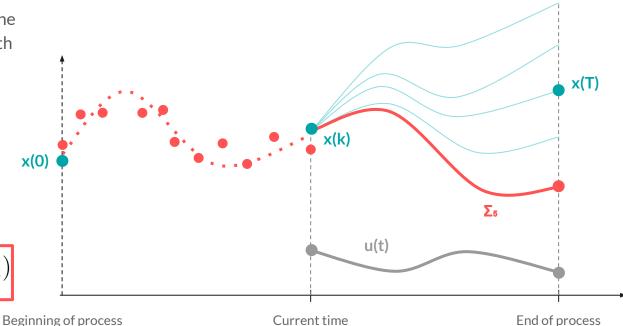
At each iteration, the algorithm calculates the optimal control that minimizes the cost function:



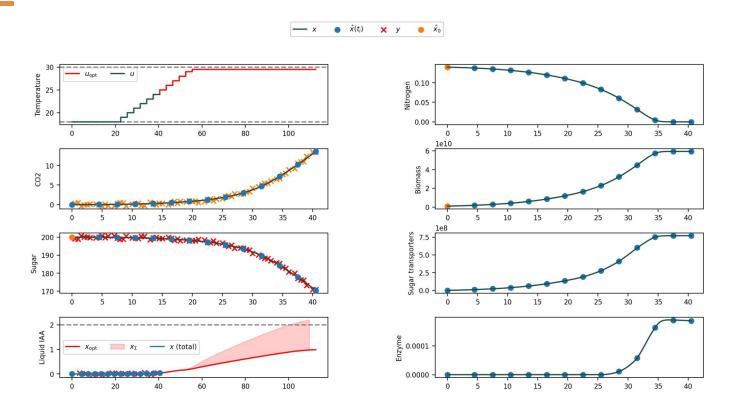
In this approach, we parametrize the parametric/system uncertainty with a set of models:

 $\Sigma = \{\Sigma_1, \ldots, \Sigma_n\}$

At each iteration, the algorithm calculates the optimal control that minimizes the cost function:



Simulations



Merci!

Agustín G. Yabo agustin.yabo@inrae.fr William Dangelser william.dangelser@inrae.fr Céline Casenave celine.casenave@inrae.fr

Campus de la Gaillarde L'Institut Agro Montpellier

