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YeastGrape

Temperature

Objectives:

- Understand and model the impact of nitrogen and 

temperature on aroma synthesis.

- Estimate internal states from measurements. 

- Develop real-time control strategies.

State of the art

- Lack of mechanistic models.

- Lack of comprehension of the biological process.

- Almost no control theory in the past.
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First approaches: extracellular modeling

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in 
enological conditions. Biotechnology and bioengineering.
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Another point of view of ester synthesis 

Understanding regulation of the ratio ACoA/CoA

Hypotheses:

- Since IAOH does not limit the reaction, ACoA 
is the limiting quantity.

Extend the model with  ACoA

- Yeasts tries to keep a ratio ACoA/CoA 
“optimal”. The reaction tries to get rid of the 
excess of ACoA to clean the cells.
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Another point of view of ester synthesis 

Modeling the production of IAA as a product of the excess of ACoA, catalyzed by the enzymes ATF1p/ATF2p, 

31



Understanding, modeling and controlling wine fermentation

Another point of view of ester synthesis 

Modeling the production of IAA as a product of the excess of ACoA

32



Understanding, modeling and controlling wine fermentation

Comparison of models (simple vs ACoA/CoA)  

Relative error for simple model

33

Relative error for ACoA/CoA model

Promising approach but still mixed results



Understanding, modeling and controlling wine fermentation

Heat-transfer dynamics
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Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

We define the function:

Thus, the temperature is a new state of the system governed by the equation:

The temperature regulation scheme is subject to the following constraints:

Fermentation Accumulation Wall Evaporation

Refrigeration system 
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The simple case: Malherbe et al. model

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in 
enological conditions. Biotechnology and bioengineering.
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FIE convergence result

We can obtain a soft convergence result based on a reformulation of the classical MHE globally asymptotically

stable convergence theorems:
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In this approach, we parametrize the 

parametric/system uncertainty with 

a set of models:

Beginning of process Current time

Variable horizon Min-Max Robust MPC
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Campo, P. J., & Morari, M. (1987, June). Robust model predictive control. In 1987 American control conference. IEEE.
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