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The wine fermentation process

Obijectives:

Grape Yeast
- Understand and model the impact of nitrogen and o — —_—
temperature on aroma synthesis. Sugar y *| Ethanol
\ —  J
. . \\\ e,
- Estimate internal states from measurements. [ Sugar ] [ Biomass ] . co,
transporters
|
- Develop real-time control strategies. Nitrogen T T )
pathway 2 Aromas
. —
: A
State of the art i State estimation
- Lack of mechanistic models. ¢ ) ; .
. . . Temperature Control
- Lack of comprehension of the biological process. \ J

_Almost nocontroltheoryinthe past .....................................
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First approaches: extracellular modeling

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in

enological conditions. Biotechnology and bioengineering.
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First approaches: extracellular modeling

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in
enological conditions. Biotechnology and bioengineering.

S - _XNST(NO - N, X, T)VST(Sa E, T) (Sugar) e Admits nitrogen addition
N = —XVN(N, E’T) (Nitrogen) e Isothermal fermentations
. X e Noaroma compounds
X =k (T)X [1 — ] (Biomass)
XmaX(NO)
E=—uS (Ethanol) COy(t) = E(t),vt > 0
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First approaches: extracellular modeling

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in
enological conditions. Biotechnology and bioengineering.

S - _XNST(NO - N, X, T)VST(Sa E, T) (Sugar) e Admits nitrogen addition
N = —XVN(N, E’T) (Nitrogen) e Isothermal fermentations
. X e Noaroma compounds
X =k (T)X [1 — ] (Biomass)
XmaX(NO)
E=—uS (Ethanol) COy(t) = E(t),vt > 0
where:
ka(T)S _ ks(T)N

8. B.T) = N, B, T) =
VST( ) Ks + S(l "‘KSiEaS) VN( ) KS _|_N<1 + KNZ‘E]%)

(Ethanol-inhibited glucose absorption) (Ethanol-inhibited nitrogen absorption) 14
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First approaches: extracellular modeling

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in
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Main fermentation kinetics

S ==X Vst(S7E7Nst7T)7
N = —vn(N,E, A, T)X,

X = pu(Ny, E, A, T)X,

. 1
Nin = vn(N,E, A, T) —

Vtr(Nina Nst7 T)
st

— (Nin + 1) (N, E,A,T),
Nst — Vtr(NinsttaT) - Nst N(NinaEaAaT)a

A= u(Nip, E, A, T)(A* — A) — x(T)A.

CO, = E = (S(0) — §)/2.17

INRAZ

(Nitrogen)
(Sugar)
N (Cellular activity)
(Nitrogen) A
(Biomass) l

(Intracellular nitrogen) N,

> X
m‘racG/
/U/ar . .
Nitrg, (Biomass)
8en)
(Glucose transporters)

(Ce”U|ar aCtiVitY) N st (Glucose transporters)

Beaudeau et al. (2023). Dynamic modelling of the effects of assimilable nitrogen addition on aroma synthesis during wine fermentation. Chemical Engineering Transactions.
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Temperature-dependent reaction rates

o o g P S (Glucose transport
Vst(S, B, Nst, T') = ka(T) StK5+S(1+Ks¢E°‘S)’ rate)
5 N (Nitrogen
vN (N, E,T) = k3(T) Ky + N1+ Ky;EoN) assimilation rate)

. QO )+ Nst
Vir(Nin, Nst, T') = k . Ty | 1. — — k : (Sugar transporter
el . N (T) ( N; & Nov kn,, + Nst synthesis rate)

Nino\ ™" E \T"
w( Ny, B, A, T) = k1 (T) (1 - ]\fbfn’()) (1 & ) A (Yeast growth rate)
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Temperature-dependent reaction rates

: S ky(T) =
(S, E, Not, T) = . , !
vl bt th+5(1+KSiEaS) kao(T) = aT? — byT + ¢,

N Bl = 4T_b47
KN—|—N(1—|—KNZ'EO‘N) kn.,

U (N N T) = (1 — Qo )+ — k Nst (Sugar transporter
prA T sty N; et stt + N ’ synthesis rate)
_ + +
(N, B, AT = (1 — Nm’0> (1 — 4 ) A (Yeast growth rate)
Nin Emax

vn(N,E,T) = ks(T)
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Heuristic model for synthesis of aroma compounds

The model is based on the relationship between sugar consumption and production of aromas

dAroma das
dt = -_ Ya1-‘oma E

The conversion yield changes when the nitrogen is added:

ln(Yaroma,l) =Dy + D,Ny + D;T + D4Ng -+ D5T2 + DN, T (before n)itrogen
addition

ln(Yaroma,z) = D; + Dg (No + Nad) + DgT + D4 (NO + Nad)z (after nitrogen

+D11T% + D12(No + Ngg)T ition
19
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Heuristic model for synthesis of aroma compounds

The model is based on the relationship between sugar consumption and production of aromas

5

dAroma das
dt = -_ Ya1-‘oma E

The conversion yield changes when the nitrogen is added:

Nitrogen addition

C° (mg/L)

o [ o N w H

0 50 100 150

ln(Yaroma,l) =Dy + D,Ny + D;T + D4Ng -+ D5T2 + DN, T (before n)itrogen
addition

ln(Yaroma,z) = D; + Dg (No + Nad) + DgT + D4 (NO + Nad)z (after nitrogen
+D11T2 +D12(NO +Nad)T addition)
20
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Heuristic model for synthesis of aroma compounds

The model is based on the relationship between sugar consumption and production of aromas

dAroma ds ,
————— =Y roma— e General and comprehensive (5
dt _ _ dt aroma compounds)
The conversion yield changes when the nitrogen is added: e Very variable performance
In(Yaroma1) = D1 + DyNg + D3T + DuNE + DsT? + DgN, T (l;(:‘.c:.re r;itrogen
a Icion

ln(Yaroma,Z) = D; + Dg (No + Nad) + DgT + Dy (NO + Nad)z (after nitrogen

+D;,T? + Dyy(Ny + Nog)T addition)
21
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Mechanistic modelling of isoamyl acetate synthesis

The objective: to develop mechanistic models of aroma synthesis based on the experimental data

pathway 1
Sugar »| Ethanol
60 [ Sugar ] [ plomass 4’[C—T/
transporters
Nitrogen T T 1AA
pathway 2

20 40
CO2 dégage (g/L)
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Mechanistic modelling of isoamyl acetate synthesis

The objective: to develop mechanistic models of aroma synthesis based on the experimental data

|

pathway 1
Sugar »| Ethanol
Température

18
= 23 > [ Sugar ] [ Biomass

transporters

Nitrogen T T 1AA
pathway 2

!

-0y

20 4'0
CO2 dégagé (g/L)

IS

Nitrogen addition ' ;

0 50 100 150

control

w

new formulation

e NH4

Total aroma (mg/L)
N

[y

Consummed sugar (g/L) 23
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Mechanistic modelling of isoamyl acetate synthesis

The objective: to develop mechanistic models of aroma synthesis based on the experimental data

athway 1 I
Sugar - Y »| Ethanol
031 Température
o 18
O 42 -3 ’ [ Sugar ] [ Biomass ] »> 4>[C_T/
—_—2g transporters L7
’
= Nitrogen T T » P 1AA
| [ } pathway 2 { l
0.0- -
0 20 40
CO2 dégagé (g/L)
5
Ja4 S - .
| 2 Nitrogen addition /-/ P=—kp(T)rs(S)N — km,pP, (Enzyme)
control = 3 4 \ J \ J
O
= new formulation g / _> v . .
52 Vv / Enzyme synthesis  Degradation
——NH4 = .
g, X = Pvx(S,E,T) (IAA)
0
o % 100 150 Enzyme catalyzing effect

Consummed sugar (g/L) 24
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Simulations of mechanistic model of IAA

INRAZ

2810 & Temperature (Exp) B 0.7 1 200 —— Sugar (New model)
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Simulations of mechanistic model of IAA

INRAZ

24.0 4 —— Temperature (Exp) 1.755 VCO2 (New model) 200 1 —— Sugar (New model)
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lell
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Simulations of mechanistic model of IAA

28 1 e Temperature (Exp) 0.8 - VCO2 (New model) 200 —— Sugar (New model)
’ VCO2 (0ld model) —== Sugar (Old model)
Hia 150 4
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Another point of view of ester synthesis

Understanding regulation of the ratio ACoA/CoA

TAOH + ACoA ™S TAA + CoA

Hypotheses:

- Since IAOH does not limit the reaction, ACoA

is the limiting quantity.
Extend the model with ACoA

- Yeasts tries to keep a ratio ACoA/CoA

“optimal”. The reaction tries to get rid of the

excess of ACoA to clean the cells.

Glycolysis

Pyruvate

Acetaldehyde

u-Acetolactate

Cazetaie) (EhanaD-~

Acetyl-CoA

Isoamyl alcohol

Isovaleraldehyde

Coenzyme A ]

a-Keto-iso- u-Keto-isocaproate
valerate

L-Leucine

Ethyl
N\ | acetate

Coenzyme A

Isoamyl
N | acetate

Coenzyme A

INRAZ
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Another point of view of ester synthesis

Modeling the production of IAA as a product of the excess of ACoA

D = kp(T).¢(S5).(—5)

Source

Central Carbon
Metabolism

29
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Another point of view of ester synthesis

Modeling the production of IAA as a product of the excess of ACoA

D = kp(T)-¢(S).(=S) = n(T).D

Degradation

Source

Central Carbon
Metabolism

30
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Another point of view of ester synthesis

Modeling the production of IAA as a product of the excess of ACoA, catalyzed by the enzymes ATF1p/ATF2p,

D = kp(T).¢(S).(=S) —n(T).D

Enz = kg (T).6(S).(—N)

Degradation

Source

Central Carbon
Metabolism |

Source

———— Enz

31
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Another point of view of ester synthesis

Modeling the production of IAA as a product of the excess of ACoA

. , Dh
D = kp(T).¢(S).(=S) — n(T).D — ]fIAA(T).K#L i o En2
Enz = kgn.(T).0(S).(—=N) |
. Dh Degradation
TAA = kIAA(T)KTh;L n DhEnZ

Central Carbon
Metabolism

32
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Comparison of models (simple vs ACoA/CoA)

Relative error for simple model

Promising approach but still mixed results

33
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Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

P;(COq) = Po(CO2, T)T + Py(T — Te) +Pe(CO2,C02,T) + Q.

Colombié, S., Malherbe, S., & Sablayrolles, J. M. (2007). Modeling of heat transfer in tanks during wine-making fermentation. Food control, 18(8), 953-960.
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Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

Pf(COQ) = pa(COg, T)T - Pw (T — Te) +Pe(0027 COQ, T) Refrigeration system
\ J \ ] J 0 J
Fermentation Accumulation Wall Evaporation

Colombié, S., Malherbe, S., & Sablayrolles, J. M. (2007). Modeling of heat transfer in tanks during wine-making fermentation. Food control, 18(8), 953-960.
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Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

Pf(COQ) = pa(COg, T)T - Pw (T — Te) +P3(002, COQ, T) Refrigeration system
| ] | ] |

Fermentation Accumulation Wall Evaporation
We define the function:
: 1 . ;
140002, 003, Toe) = 5o (Pf(co2) — Py(The —Tb) — P.(COs,COs, Tnc)>

Colombié, S., Malherbe, S., & Sablayrolles, J. M. (2007). Modeling of heat transfer in tanks during wine-making fermentation. Food control, 18(8), 953-960.



Understanding, modeling and controlling wine fermentation IN RA@

Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

Pf(COz) = pa(COQ, T)T + P, (T — Te) —i—Pe(COQ, COQ, T) Refrigeration system
\ J \ ] ] 1 J
Fermentation Accumulation Wall Evaporation

We define the function:
1

Pa (COQa Tnc)
Thus, the temperature is a new state of the system governed by the equation:

Q.
P,(CO,T)

vr,. (COz,COy, Tye) =

(PH(CO2) = Py(Toe = T2) = Po(COs,COs, Toe) )

T = vy, (COz,CO,, T) —

Colombié, S., Malherbe, S., & Sablayrolles, J. M. (2007). Modeling of heat transfer in tanks during wine-making fermentation. Food control, 18(8), 953-960.
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Heat-transfer dynamics

The equation for the conservation of power gives the time-evolution of the temperature:

Pf(COz) = pa(COg, T)T + P, (T — Te) —i—Pe(COQ, COQ, T) Refrigeration system
\ J \ ] ] 1 J
Fermentation Accumulation Wall Evaporation

We define the function:
1

Pa (COQ) Tnc)
Thus, the temperature is a new state of the system governed by the equation:

Q.
P,(CO,T)

LV . (COQ, COQa Tnc) - (Pf(COQ) - Pw (Tnc - Te) - Pe(0027 COZ? Tnc))

T = vy, (COz,CO,, T) —

The temperature regulation scheme is subject to the following constraints:
dT
dC'Oo

Qe(t) > 0 18°C < T < 28°C 2 AT
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State estimation of the main kinetics

Grape Yeast

pathway 1
Sugar Ethanol

sugar Biomass >
transporters CO:

Nitrogen T T
pathway 2

Features of the fermentation process:

A,

[ State estimation ]-7

40
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State estimation of the main kinetics

Grape Yeast
Features of the fermentation process:

pathway 1
- We can easily measure CO: through the Sugar Ethanol

weight difference.
sugar Biomass > cO
transporters ?

Nitrogen T T
pathway 2

A,

[ State estimation ]17
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State estimation of the main kinetics

Grape Yeast
Features of the fermentation process:

pathway 1
- We can easily measure CO: through the Sugar Ethanol

weight difference. [ Sugar ][
Biomass > CO;

A,

transporters

- Biomass and nitrogen measurements T T
Nitrogen

require manual sampling. e ED

[ State estimation ]17
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State estimation of the main kinetics

Grape Yeast
Features of the fermentation process:

pathway 1
- We can easily measure CO: through the Sugar Ethanol
weight difference.
Sugar Biomass >  CO
. . transporters 2
- Biomass and nitrogen measurements

require manual sampling. Nitrogen pathway 2

- Low-frequency sampling time (= high
computation time).

A,

[ State estimation ]17
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State estimation of the main kinetics

Grape Yeast
Features of the fermentation process:

pathway 1
- We can easily measure CO: through the Sugar Ethanol
weight difference.
Sugar Biomass >  CO
. . transporters 2
- Biomass and nitrogen measurements

require manual sampling. Nitrogen pathway 2

- Low-frequency sampling time (= high
computation time).

A,

. . . . Stat timati
Objective: estimate the concentrations of sugar, [ ae estimation l
nitrogen and biomass from COz: measurements

44
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The simple case: Malherbe et al. model

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in
enological conditions. Biotechnology and bioengineering.

S = —XNsr(No — N, X,T)vsr(S,E,T) ] oD
N = —Xvn(N,E,T) h 5
. X 330.25— ’ " 0.025 2
X = k(DX 1= =] —wom ||
max \< V0 A Y/ & S N e £
E = _/,LS 0.00 s s S -0.000 )

where: 2 t'ni)lg (h) 7

ko(T)S ks(T )N
I/ST(S,E,T) — 2( ) VN(N,E,T) = 3( )

_KS—I—S(l—f—KSiEaS) _Ks—I—N(l—I-KNZ'ER‘[)

(Ethanol-inhibited glucose absorption) (Ethanol-inhibited nitrogen absorption) 45
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The simple case: Malherbe et al. model

Malherbe, S. et al. (2004). Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in
enological conditions. Biotechnology and bioengineering.

. 0.50 B

S =—XNgr(No— N, X, T)vsr(S,E,T) °'°5°§
N = —Xvy(N,E,T) 5 5
X ??ozs— / o L0.025 £
X = kl(T)X 1 — §§ ! — dCO2/dt E
Xmax (NO ) 3o : i ECOZ/dt exp. g
: : : 4

E = _ILLS 0.00 e e e et -0.000

25 50 75

time (h)

Proposition 1: Under 1sothermal conditions (71" constant), for any 0 < t; < to, System - is observable over [t1,ta].
That is, for any two trajectories of - with initial conditions such that (So, No, Xo, ), (So, No, Xo) € Q, Ejj, 1) =

E|[t1,t2] implies (S(),N(),Xo) = (So,No,XQ).
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Non-linear Full Information Estimator (FIE)

Giventhestate £ = (S, N, X, E) and the dynamics: *
. | ®
' °
5 = f(g) ' ® ¢ .
= | ® °
y = E+4v 6 °«°, .
0 k-2 k-1 k

47
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Non-linear Full Information Estimator (FIE)

Giventhestate £ = (S, N, X, E) and the dynamics:

§ = f(g) i ° ce .
- | ) ® :
y B+ ® %, |
with initial conditionsin &y € Qf := Q¢ x {0} with
Qo = {(So, No, Xo) :0 < 8p,0 < Ng <1,
0 S XO S Xmax(NO)}
0 k-2 k-1 k

48
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Non-linear Full Information Estimator (FIE)

Giventhestate £ = (S, N, X, E) and the dynamics:
5 = f(g) i Q..
y=E+v o §

with initial conditionsin &y € Qf := Q¢ x {0} with

Qo = {(So, No, Xp) :0 < Sp,0 < Ny <1,
0 S XO S Xmax(NO)}

INRAZ

The Full Information Estimation problem is to solve the : |
optimization problem: 0

Tk
argmin Jy (&) =al€¥1(0) — &o* + / v(s) — e, (5) |2 ds
50696 0

49
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Non-linear Full Information Estimator (FIE)

Giventhestate £ = (S, N, X, E) and the dynamics:

£ = 1(6) T

! . .0 &k
_ Lo o . *]
y = E+v £0) @ .? o |
with initial conditionsin &y € Qf := Q¢ x {0} with
Qo = {(So, No, Xp) :0 < Sp,0 < Ny <1,
0 S XO S Xmax(NO)}
The Full Information Estimation problem is to solve the E | | | | | | -
optimization problem: 0 k-2 k-1 k
Tk
. rk—1 2 2
argurin Ju(60) =alé*10) ~ 6o + [ Iv(s) — peu(5) s
50696 0

At each time instant, we take into account all the data. 50
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FIE convergence result

We can obtain a soft convergence result based on a reformulation of the classical MHE globally asymptotically

stable convergence theorems:

time (h)

INRAZ

51



Understanding, modeling and controlling wine fermentation IN RA@

FIE convergence result

We can obtain a soft convergence result based on a reformulation of the classical MHE globally asymptotically
stable convergence theorems:

Proposition 5: Under the above assumptions, there exists a C-class function w such that
€(t) — € ) < w(llvllL2o,m), ¥t € [0, Tk]

In particular, £ = £* on [0, T}] if v = 0. Furthermore, if |v]| L2 (7 ,4+00) — 0 as k — 0, then £k (0) — &.

time (h) 52
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FIE convergence result

We can obtain a soft convergence result based on a reformulation of the classical MHE globally asymptotically
stable convergence theorems:

Proposition 5: Under the above assumptions, there exists a K-class function w such that
() = £ )] < wlllvllzzomyy),  VE € [0,Tk]

In particular, £ = £* on [0, T}] if v = 0. Furthermore, if |v]| L2 (7 ,4+00) — 0 as k — 0, then ék(O) — &o.

204 93 2
% -
g O L T 2 1
S787 0.2 & ™
et i -- X g J 0-
2 2107 — dCO/dt = s
g — dCOz/dtexp. |l-0.1 = 2 14
oE i © B
02054 J" R | ©
T o E
0.0 ﬁ = T T T T
L : : I 0 50 100 150
0 50 100 150 time (h)

time (h) 53



The control problem
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Numerical results

Minimize total energy consumption:

tr
JIZQT: 5 Qc(t)dt

Maximize final liquid concentration of IAA:

Jo = IAAliq(tf)
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Numerical results

Minimize total energy consumption:
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Numerical results
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Numerical results

Minimize total energy consumption: Maximize final liquid concentration of IAA:
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Numerical results
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Minimize total energy consumption:

tf
Jl = QT = Qc(t) dt

27
24 T TN ==z
21 1 Profile A
18 T T
100 200
t [h]
27 1 ___ ]
24 4
21 1 Profile B
18 T T
100 200
t[h]

Final liquid IAA concentration [mg L™!]
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Variable horizon MPC (Model Predictive Control)

The approach can easily include:

- Complex nonlinear dynamics
- Complex cost function
- Complex constraints
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Variable horizon MPC (Model Predictive Control)

The approach can easily include:

- Complex nonlinear dynamics 4
- Complex cost function ¢ X(M
- Complex constraints o0 © ®
¢ e o ° .
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61



Understanding, modeling and controlling wine fermentation IN RA@

Variable horizon MPC (Model Predictive Control)

The approach can easily include:

- Complex nonlinear dynamics 4
- Complex cost function I ¢ x(T)
- Complex constraints . 0.0 o'F
' . o .
‘0 o . Y .‘ . “ x(k)
x(0) ‘ ®.. .0 :
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Variable horizon MPC (Model Predictive Control)

The approach can easily include:

- Complex nonlinear dynamics 4
- Complex cost function !
- Complex constraints

® .
At each iteration, the algorithm x(0) ‘ ¢...0°
calculates the optimal control that
minimizes the cost function:

in J(u(t),2(t), % .
Join J(u(t), £(t), %) |

v

o
P o
— -

63



Understanding, modeling and controlling wine fermentation IN RA@

Variable horizon MPC (Model Predictive Control)

The approach can easily include:
Next time step

- Complex nonlinear dynamics
- Complex cost function
- Complex constraints

x(T)

At each iteration, the algorithm
calculates the optimal control that
minimizes the cost function:

in J(u(t),2(t), %
Join J(u(t), £(t), %)
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Variable horizon MPC (Model Predictive Control)

The approach can easily include:

- Complex nonlinear dynamics

- Complex cost function
- Complex constraints

At each iteration, the algorithm
calculates the optimal control that
minimizes the cost function:

in J(u(t),2(t), %
Join J(u(t), £(t), %)

Next time step

x(T)

v
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Variable horizon MPC (Model Predictive Control)

The approach can easily include:

- Complex nonlinear dynamics

- Complex cost function
- Complex constraints

At each iteration, the algorithm
calculates the optimal control that
minimizes the cost function:

in J(u(t),2(t), %
Join J(u(t), £(t), %)

Next time step

x(T)

v

66



Understanding, modeling and controlling wine fermentation IN RA@

Variable horizon MPC (Model Predictive Control)

The approach can easily include:
Next time step

- Complex nonlinear dynamics
- Complex cost function
- Complex constraints

° ° L

At each iteration, the algorithm x(0)

calculates the optimal control that
minimizes the cost function:
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Temperature C0O2 & dCO2
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Variable horizon Min-Max Robust MPC

Campo, P. J., & Morari, M. (1987, June). Robust model predictive control. In 1987 American control conference. IEEE.

In this approach, we parametrize the
parametric/system uncertainty with

a set of models: !
i .. ¢ X(M
2 = {217"'7271} 0.0 o9 |
: .0 0‘ . . :
o o o "o x(k) !
x(0) @ ®.. .0’ ! !
= | —
Beginning of process Current time End of process
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Variable horizon Min-Max Robust MPC

In this approach, we parametrize the
parametric/system uncertainty with
a set of models:

Y= {%,...,5.} o o
L . o

H
$ ®
At each iteration, the algorithm x(0) ‘ Y M

calculates the optimal control that
minimizes the cost function:

min max J(u(t), z(t),%;)

. o XM
u(t)eU X;eX ;

=

Beginning of process Current time End of process
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Variable horizon Min-Max Robust MPC

In this approach, we parametrize the
parametric/system uncertainty with

a set of models: 4
! . ¢ X(M
S = {5} e e ;
o ‘. ® :
o o R o .‘ . “ X(k) i
. . . x(0) @ .. .o ! |
At each iteration, the algorithm , ! !
calculates the optimal control that
minimizes the cost function:
| ‘ u(t) |
min |max J(u(t), z(t), %) i \/\
u(t)eU|2;€X : : : ‘
[ [ o
Beginning of process Current time End of process
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Variable horizon Min-Max Robust MPC

In this approach, we parametrize the
parametric/system uncertainty with
a set of models:

Y = {S,.... 5}

*

H

o o o ©.
At each iteration, the algorithm x(0) ‘ ®. . .e
calculates the optimal control that

minimizes the cost function:
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Variable horizon Min-Max Robust MPC

In this approach, we parametrize the
parametric/system uncertainty with
a set of models:

Y = {S,.... 5}
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o o o ©.
At each iteration, the algorithm x(0) ‘ ®. . .e
calculates the optimal control that

minimizes the cost function:
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Simulations
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