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Tricuspid valve and 
bicuspid valve

Clinical Context

• Some pathologies are correlated with the formation of aneurisms 

such as Bicuspid Aortic Valves 

• Currently the criteria to predict rupture are aneurysm diameter and 

growth rates.  

• The limitations of these anatomical criteria are well known. 

• Among 591 patients with aortic dissection, [1] found that 59% of 

them had an aorta diameter below the threshold. 

• Some diseases have a major impact on blood flow 

• This can alter the jet angle, which correlates with increased wall 

shear stress (WSS), a factor responsible for wall thinning.

Velocity streamlines from Bluhm 
Cardiovascular institute

https://www.youtube.com/watch?v=bIULEWqBXeY

[1] Pape et al. (2007) Aortic diameter >or = 5.5 cm is not a good predictor of type A aortic 
dissection: observations from the International Registry of Acute Aortic Dissection (IRAD).

https://www.youtube.com/watch?v=bIULEWqBXeY
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MRI data

• MRI is a non-invasive imaging technique used to visualize internal 

body structures. 

• It relies on the resonance properties of hydrogen nuclei when 

exposed to a strong magnetic field. 

• The same technology can be used to quantify tissue velocity within 

each voxel using a 4D flow sequence. 

• Provides accurate measurement of blood flow rates (relative 

error < 3.6%). 

• The data is noisy at the voxel level, with relative errors reaching 

up to 20% [1][2]. 

• Spatial resolution is typically around 2 mm × 2 mm × 2 mm.

3

MRI and 4D MRI images

[1] Kweon J. et al. (2016). Four-dimensional flow MRI for evaluation of post-stenotic turbulent 
flow in a phantom: comparison with flowmeter and computational fluid dynamics. 

[2] Töger, Johannes et al. (2015). Phantom validation of 4D flow: Independent validation of flow 
velocity quantification using particle imaging velocimetry.
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Basic Principles of MRI

• The principle is to align the magnetization vectors of 

the hydrogen protons with a very strong external 

magnetic field. 

• The precession frequency of the magnetization 

vector  is proportional to the magnetic field strength 

. 

• By varying the magnetic field with respect to 

position, the received signal becomes the Fourier 

transform of the longitudinal particles' magnetic 

moment distribution :  

•
 =  

with 

   et  

ω = γB0

S(kx, ky) = ∫Ω
ρ(r) e−iγ ∫t

⃗G⋅r ∫Ω
ρ(r) e−2πi(kxx+kyy)

kx =
γt
2π ∫

t′ 

0
Gx(t′ ) dt′ ky =

γt
2π ∫

t′ 

0
Gy(t′ ) dt′ 

RF Pulse

Gy

Gz

Gy

Gz

S(t) = S(kx, ky)
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Basic Principles of 4D MRI 
Velocity estimation

For each velocity component :  

• The idea is to track the information transported by a particle.  

• Considering  we obtain :  

   

  

• The velocity is recovered using two close angle measurement by :  

.     with  

r(t0 + δt) = r0 + δtv0 + o(δt)

S(t) = ∫Ω
ρ(r) e−i ∫t

⃗G⋅r

∫
δt

t=0
G(t)r dt = γr(0) ⋅ ∫

δt

0

⃗G(t) dt + γv(0)∫
δt

0
δt

⃗G(t) dt + o(δ2
t )

vxi
=

vENC

π
(ϕ[xi]

1 − ϕ[xi]
2 ) ϕ[xi]

j = arg(S[xi]
j )
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M1 M1

M0

Velocity gradient sequence

M0
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Benefits of CFD Models

• Estimating quantities of interest directly from noisy data is 

challenging, especially when they depend on derivatives of the velocity 

field like the WSS. 

• CFD approach can be a favorable approach 

• Non invasive 

• Easily reproducible 

• Potentially patient-specific 

• Overcomes limitations due to noisy data 

• Provides access to markers that are difficult to measure in vivo 

(e.g., pressure estimation)

6

WSS computed directly from an analytical Poiseuille flow 
which has been noised. 

The target value is 6.1 Pa

WSS corresponds to the tangential 
component of the stress vector at each 
point on the surface . 

σ ⃗n ⋅ τ
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Existing approaches

• Several studies have address this problem by considering direct 

approach. 

• Direct approach presents several limitations. 

• Imposing accurate inlet boundary conditions is difficult because of 

noise in the measurements. 

• At the outlet, a 0D model must be carefully calibrated [1][2]. 

• It can be calibrated manually as in  

Mollo, Pierre et al. (2025). Accurate Cerebral Blood Flow Simulations Compared to 

Real Data. Mathematical Modelling of Natural Phenomena. 

• Or Automatically as proposed in  

Arthurs CJ et al (2020). A flexible framework for sequential estimation of model 

parameters in computational hemodynamics. 

• To address these challenges, we propose an inverse modeling approach 

based on 4D-MRI data.

7

(u, p) ∈ (H1, L 0
2 ) solves the following problem :

ΓInlet

ΓOutlet

ΓOutlet

Aorta mesh with his boundary 
slices

Pressure in the aortic branch

Pressure in the descending 
aorta

Inlet Boundary condition

∂u
∂t

+ u∇u − Δu + ∇p = 0 in Ω

div(u) = 0 in Ω
u = uIRM  on ΓInlet
u = 0 on ΓWall

σ ⃗n = RQ ⃗n  on ΓOutlet
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Selected approach

• The idea is to incorporate data over the entire domain to compensate for the lack of boundary conditions. 

• Time steps are treated independently, in order to avoid solving large coupled systems. 

 

        

• The resulting problem is ill-posed and requires proper stabilisation. 

• We propose an approach where we discretize the problem first, and then apply regularization. 

• The method is weakly consistent. 

• Allows a convergence estimate.

min
ℳ(u)=0

1
2 ∫

TN

t=t0
∫Ω

∥ u − umeas ∥2 dV dt ⟶ min
ℳ(un+1,un)=0 ∫Ω

∥ un+1 − umeas ∥2 dV

8
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Inverse Problem Formulation

• This work is based on the results of the following work :  

• Boulakia, Muriel & Burman, Erik & Fernández, Miguel & Voisembert, Colette. (2020). Data 

assimilation finite element method for the linearized Navier–Stokes equations in the low 

Reynolds regime. Inverse Problems. 

• This work is done on a stationary framework. 

• The idea here is to explore the transient case. 

• This approach allows us to compensate the lack of boundary conditions by 

the data. 

•  reflects the relative confidence assigned to the data (for exemple 

)

∥ ⋅ ∥γ
γ ∥ ⋅ ∥L2

9

min
ℳ(u)=0

∥ u − umeas ∥2
γ

ℳ(u) =
∂u
∂t

+ u∇u − Δu + ∇p − f

div(u)
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Inverse Problem Formulation 
Time discretization

Temporal semi-implicit discretization 

Let  and  

 

 

un ∈ H1 pn ∈ L2
0

min
NS(un+1)=f

∥ un+1 − un+1
meas ∥2

γ

NS(un+1) =
un+1 − un

δt
+ un ∇un+1 − Δun+1 + ∇pn+1
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a(un+1, v)

Variational formulation :  = 





NS([un+1, pn+1], [v, q])

⟨
un+1

δt
, v⟩ + ⟨un ∇un+1, v⟩ + ⟨ε(un+1), ε(v)⟩ − ⟨pn+1, div(v)⟩ + ⟨q, div(un+1)⟩ = ⟨ f n+1, v⟩ + ⟨

un

δt
, v⟩

−b(pn+1, v) + b(qn+1, u)

A[(un+1, pn+1), (v, q)]

div(u) = 0

Let  ,  and  and un ∈ H1 pn ∈ L2
0 v ∈ H1

0 q ∈ L2
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Inverse Problem Formulation

We then discretize the problem using the finite element method 

Stabilisation :  

ℒ =
1
2

∥ uh − umeas ∥2
γ + A[(uh, ph), (v, q)] − ⟨ f, v⟩

11

Stabilisation termes

+
1
2

S[(uh, ph), (uh, ph)] −
1
2

S*[(v, q), (v, q)]

S[(uh, ph), (uh, ph)] = su(uh, vh) + sp(ph, qh)

S*[(u, p), (v, q)] = s*u (uh, vh) + s*p (ph, qh)

su(u, v) = ∑
F∈ℱi

∫F
hF[[∇u]][[∇v]] + γdiv ∫Ω

div(u)div(v) s*u (u, v) = γ*u ∫Ω
∇u : ∇v

s*p (p, q) = γ*p ∫Ω
pqsp(p, q) = γp ∫Ω

h2 ∇p ⋅ ∇q

[1] Boulakia, Muriel et al. (2020). Data assimilation finite element method for the linearized Navier–Stokes equations in the low Reynolds regime. Inverse 
Problems. 
[2] Burman, Erik. (2016). Stabilised Finite Element Methods for Ill-Posed Problems with Conditional Stability.
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Inverse Problem Formulation

The optimality system to be solved is therefore the following: 

find  and   

and  

 

In the stationary case, we obtain the following results [1] :  

Consistency :  

•  

Convergence :  

Let  and  et  solution of the inverse problem, then  et  

•

(uh, ph) ∈ Vh × Q0
h (vh, qh) ∈ Vh × Q0

h
∀(wh, xh) ∈ Wh × Qh (yh, zh) ∈ Vh × Q0

h

{
A[(uh, ph), (wh, xh)] − S*[(vh, qh), (wh, xh)] = ⟨ f, wh⟩

A[(yh, zh), (vh, qh)] + S[(uh, ph), (yh, zh)] + ⟨uh, yh⟩γ = ⟨umeas, yh⟩γ

A[(u − uh, p − ph), (wh, xh)] = − S*[(zh, yh), (wh, xh)]

(u, p) ∈ [H2(Ω)]d × H1(Ω) (uh, ph) ∈ Vh × Q0
h (zh, yh) ∈ Wh × Qh ∀ωT ⊂ ⊂ Ω ∃τ ∈ (0,1)

|u − uh |ωT
≤ Chτ(∥ u ∥[H2(Ω)]d + ∥ p ∥H1(Ω) + h−1 ∥ δu ∥L2(ωM)) + h ∥ f ∥L2

12

[1] Boulakia, Muriel et al. (2020). Data assimilation finite element method for the linearized Navier–Stokes equations in the low Reynolds regime. Inverse 
Problems.
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Inverse Problem Formulation

• The noise in MRI is spatially non-uniform, it depend on the MRI 

magnitude. 

• We need to take its variance into account in the model. 

• The idea is to define the norm as   with 

 

• Depending on the MRI acquisition technique, the noise can be either: 

• Directionally independent  

• Coupled across spatial components.

∥ u ∥γ= uTC−1u
C = Cov(umeas)

13

Magnitude at the systolic peak
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Recover the velocity covariance 
matrix

14

• The covariance matrix will be used to define the weighted 

norm as follows:  

 

• Recall that : 

.  

• Assuming additive Gaussian[1] noise of equal variance  , 

we can derive the variance of  :  

∥ u ∥γ= uTC−1u

vxi
=

vENC

π
(ϕ[xi]

1 − ϕ[xi]
2 )

σ2

ϕ

σ2(ϕ) =
σ2(ε)

Im2 + Re2

[1] Conturo TE, Smith GD. (1990). Signal-to-noise in phase angle reconstruction: dynamic range extension using phase reference offsets.

• Depending on the acquisition sequence used, we can 

derive : 

  

 

vxi
=

vENC

π
(ϕ[xi]

1 − ϕ[xi]
2 )

Then

Cov(v) =
v2

ENC σ2(ε)
π2(Im2 + Re2) (

2 0 0
0 2 0
0 0 2)

vxi
=

vENC

π
(ϕ[Ref ]

1 − ϕ[xi]
2 )

Then

Cov(v) =
v2

ENC σ2(ε)
π2(Im2 + Re2) (

2 1 1
1 2 1
1 1 2)
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Numerical Results

15

4D MRI data

Comparison of 
simulations

Time 0.11s 0.17s

 
Direct simulation

 
Direct simulation

U.C with 

∥ ⋅ ∥γ= 105 ∥ ⋅ ∥
U.C with  

Coil variance : 1.3 ⋅ 10−4
U.C with 

∥ ⋅ ∥γ= 105 ∥ ⋅ ∥
U.C with  

Coil variance : 1.3 ⋅ 10−4
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Discrepancy

16

Direct simulation

Unique continuation 

with ∥ ⋅ ∥γ= 105 ∥ ⋅ ∥

Unique continuation 
with  

Coil variance : 1.3 ⋅ 10−4

0.11 s 0.17 s 0.22 s

540.1 748.5 751.0

272.2 314.9 309.32

277.86 350.38 347.29
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Numerical Results | comparison of pressure estimates at t = 0.11

17

Constant Weight 

105
Direct method 

Simulation

Using covariance matrix 

Coil variance : 1.3 ⋅ 10−4
Using covariance matrix 

Coil variance : 6 ⋅ 10−5
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WSS estimation

18

WSS computed directly from the data

WSS computed from 
direct simulation

WSS computed from U.C 
with constant weight

WSS computed from U.C 
using covariance matrix 

Coil variance : 1.3 ⋅ 10−4
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Limitations and Perspectives

• The problem we are solving is two times larger  

• The wall motion is neglected  

• Does the error introduced in the time-dependent problem remain controlled ? 

• We are expecting to receive a phantom to experimentally validate our results. 

• We also plan to simulate the MRI acquisition process in order to generate realistic 

synthetic data. 

19
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Thank you for your attention.

20


