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Molecular dynamics
Molecular dynamics (MD) probes the behavior of atomistic system at the level of classical motion of nuclei.

5 picoseconds of the protein Foldit1 (PDB ID 6MRR) simulated using
, (courtesy of Joe Greener).Molly.jl

Aims to replace physical experiments in extreme or expensive
conditions with numerical experiments.

Long trajectories are necessary to access dynamical properties,
and parametrize models on larger scales.

Many algorithmic tricks are needed to simulate long trajectories
reliably and efficiently, and sample the whole configuration
space.

Length of sampled trajectories is hindered by metastability/
stiffness/separation of timescales, the manifestation of free-
energetic barriers larger than typical thermal fluctuations.

Configurational ensemble has many modes, corresponding to
metastable states.
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The timescale problem in MD

Scaling in simulations: from petascale to exascale. Courtesy of
Danny Perez (LANL)

Parallelization in space is “easy”, parallelization in time is much
harder.

Accelerated dynamics methods: (Hyperdynamics ( ),
Temperature Accelerated Dynamics ( ),
Parallel Replica ( )) can help.

Voter 1997
Sørensen and Voter 2000

Voter 1998

Metastable dynamics jump rarely and suddenly between
metastable states.

Accelerated MD aims at predicting the sequence of states and
transition times correctly by sacrificing resolution of the
dynamics inside each state.

Spatial coarse-graining strategy.

Key idea: the system will typically converge in a statistical sense
to a local equilibrium within a metastable state  and remain
there for a long time before exiting.

Ω

For this idea to be valid, and for efficient algorithms, we require:

≪ 1.Typical time to converge to local equilibrium in Ω
Typical time to exit from Ω
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Dynamical setting
Molecular trajectories are solutions to a stochastic differential equation:

d = −a( )∇V( ) dt + div a( ) dt + a( d ,Xt Xt Xt
1
β

Xt
2
β
‾‾

√ Xt)1/2 Wt

 potential energy function,  s.p.d. diffusion coefficient,  standard Brownian motion in .V : → ℝℝd a : ℝd×d W ℝd

Ergodic and reversible with respect to the standard Gibbs measure at temperature (kβ)−1

π(dx) = dx/ .e−βV(x) Zβ

Continuous-time preconditioned Langevin Monte-Carlo / diffusion on the Riemannian manifold  = ( , )ℝd a−1

Evolution semigroup generator is symmetric on :( , π)L2 ℝd

φ = div ( a∇φ) .β
1
β

eβV e−βV

We assume everywhere that , and  is locally elliptic: .V , a ∈ 2,∞
loc a ∈a−1 L∞

loc
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Local approach to metastability
For , local equilibrium is given by a quasi-stationary distribution (QSD) in  i.e. a probability  for whichΩ ⊂ ℝd Ω ∈ (Ω)νΩ 1

∀ A ⊂ Ω, ( ∈ A | t < (Ω)) = (A).ℙνΩ Xt Texit νΩ

Since ,  are bounded and  is uniformly elliptic on , the QSD is unique, and related to the principal Dirichlet eigenvector:V Ω a Ω

(dx) = , − (x) = (x),νΩ
(x) dxu1,Ω e−βV(x)

∫Ω u1,Ωe−βV βu1,Ω λ1,Ωu1,Ω

Here, we consider the generator  with absorbing Dirichlet boundary conditions on :

It is self-adjoint with compact resolvent on  for bounded .

β ∂Ω

( ) = (Ω) ∩ {u ∈ (Ω) : u ∈ (Ω) ⊂ ( )}.β H 1
0 L2 β L2 ′ ℝd

(Ω) := (Ω, dx)L2
β L2 e−βV(x) Ω
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Spectral characterization of timescales
Denote  the law of the process conditioned on remaining trapped.= Law ( |t < (Ω))μt Xt Texit

Theorem (Le Bris et al. ( ))2012

= ⟹ (Ω) ∼ ( ), (Ω) ⊥⊥ .μ0 νΩ Texit λ1,Ω Texit XTexit(Ω)

This result justifies the use of the Parallel Replica algorithm.

The exit rate is given by the principal Dirichlet eigenvalue .= 1/ [ (Ω)]λ1,Ω 𝔼νΩ Texit

Convergence to the QSD and bias on the exit event are exponentially decaying. There exist  depending on  such that

Theorem (Le Bris et al. ( ))2012

, > 0C1 C2 μ0

⩽ ,‖ − ‖μt νΩ TV C1e−( − )tλ2,Ω λ1,Ω

,⩽ .( − t, ) − ( , )‖‖Lawμt Texit(Ω) X (Ω)Texit LawνΩ Texit(Ω) X (Ω)Texit
‖‖TV C2e−( − )tλ2,Ω λ1,Ω

The decorrelation rate is given by the spectral gap of the Dirichlet generator .−λ2,Ω λ1,Ω

Set  in ParRep, for some fixed tolerance parameter .(Ω) = − log /( − )Tcorr εcorr λ2,Ω λ1,Ω 0 < < 1εcorr

In practice, raises the need for quantitative or statistical estimates of  (and also ).−λ2,Ω λ1,Ω ,C1 C2
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A spectral shape optimization problem
The goal becomes to maximize the efficiency of ParRep by maximizing the separation of timescales:

( − ) / .max
Ω⊂  open, bounded, connectedℝd

λ2,Ω λ1,Ω λ1,Ω

Make the exit rate as small as possible compared to the decorrelation rate. Quantitative measure of local metastability / timescale
separation inside .Ω
Standard choice takes , the basin of attraction of some local minimum  for  under the steepest-descent dynamics

.
Ω = ( )z0 z0 V

(t) = −a(X(t))∇V(X(t))Ẋ
The case of the Dirichlet Laplacian ,  is a famous question in spectral geometry (Payne-Polya-Weinberger conjecture).a = Id V = 0
Question has been identified by MD practitioners, e.g. in Perez, Uberuaga, and Voter ( ), but not studied in depth.2015

Problem is ill-posed as a global optimization problem, e.g., for , :V(x) = |x /2 + δV(x)|2 δV ∈ ( )∞
c ℝd

/ +∞.λ2,B(0,R) λ1,B(0,R) − →−−−
R→+∞

Typical situation in spectral optimization: introduce constraints, or focus on local optimization.
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Local optimization with steepest ascent method
Expressions for shape-perturbations of the Dirichlet
eigenvalues, using Hadamard calculus.

Given a space of perturbations: , consider
the transported domain

θ ∈ ( , )1,∞ ℝd ℝd

= {x + θ(x), x ∈ Ω}.Ωθ

Study properties of the eigenvalue perturbation maps

: θ ↦ .λk λk,Ωθ

The spectrum (of  with Dirichlet b.c. on ) is enumerated
with multiplicity in order of increasing magnitude

with an associated basis of eigenvectors

−β Ω

0 < < ⩽ ⩽ ⋯λ1,Ω λ2,Ω λ3,Ω

= , ∀ i, j ⩾ 1.∫Ω
ui,Ωuj,Ωe−βV δij

A domain  and its perturbation .Ω Ωθ
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Explicit formulas for shape perturbations
Assume  is a bounded  (or convex Lipschitz) domain
and  has multiplicity :

Ω ⊂ ℝd 1,1

λk,Ω ⩾ 1mk

< = ⋯ = < .λk−1,Ω λk,Ω λk+ −1,Ωmk λk+ ,Ωmk

Theorem (Blassel, Lelièvre, and Stoltz ( ), in preparation)2025b

The map  is locally Lipschitz in a -neighborhood of
.

θ ↦ (λk+ℓ,Ωθ )0⩽ℓ<mk ( ; )1,∞ ℝd ℝd

θ = 0

If ,  is  in a -neighborhood of , with Fréchet derivative

the shape derivative of .

= 1mk λk 1 ( ; )1,∞ ℝd ℝd θ = 0

D θ = − an n ,λk
1
β ∫∂Ω ( )∂uk,Ω

∂n
2
n⊤ θ⊤ e−βV

λk

If ,  is only Gateaux semi-differentiable:  is right-differentiable at .
Its derivative is the bottom eigenvalue of the matrix

> 1mk λk t ↦ λk,Ωtθ t = 0

(θ) = − an n , ∀ 1 ⩽ i, j ⩽ .MΩ,k
ij

1
β ∫∂Ω

∂uk+i−1,Ω
∂n

∂uk+j−1,Ω
∂n n⊤ θ⊤ e−βV mk

Transport variational formulation of eigenvalue PDE on  back to , transforming
it into a -dependent PDE on a fixed domain.

Regularity results follow from perturbation theory (Kato ( )), using an approach inspired
by Haug and Rousselet ( ), Rousselet ( ) (for problems in structural mechanics).

Idea of proof

= ΩΩθ Φθ Ω
θ

2013
1980 1983

Perturbation of the eigenvalue  in the direction  (here
)

λk,Ω θ
= 3mk

Slopes of the right-tangents are the eigenvalues of  (with
multiplicity).

(θ)MΩ,k

Efficient numerical optimization requires taking eigenvalue
degeneracies into account, and regularization of the ascent
direction.
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Galerkin objective for high-dimensional systems
For systems of interest, . In MD, common to use a collective variable (CV)  with  for interpretation and
biasing. Consider states defined in CV space:  for some 

d ≫ 1 ξ : →ℝd ℝm m ≪ d
Ω = ( )ξ−1 Ωξ ⊂Ωξ ℝm

Consider the test space

introduce the Rayleigh-Ritz (or “coarse-grained”) eigenpairs:

where  is the Rayleigh quotient for 

Coarse-grained spectrum

( ) = {φ ∘ ξ, φ ∈ ( )} ⊂ ( ( )),ξ Ωξ H 1
0 Ωξ H 1

0 ξ−1 Ωξ

(φ, ψ ; ) = Q(φ ∘ ξ, ψ ∘ ξ; ( )), ( , ) = ,Qξ Ωξ ξ−1 Ωξ Qξ uξ
k,Ωξ

uξ
ℓ,Ωξ

λξ
k,Ωξ

δkℓ

Q −β

Q(u, v;Ω) = .1
β

∇ a∇v∫Ω u⊤ e−βV

uv∫Ω e−βV

where  are the free-energy and effective diffusion through :

where  is a conditional distribution  on the level-set of the CV.

Co-area formula gives (Blassel, Lelièvre, and Stoltz ( ))2025b

∀ φ, ψ ∈ ( ), (φ, ψ ; ) = ,ξ Ωξ Qξ Ωξ
1
β

∇ ∇ψ∫Ωξ
φ⊤aξ e−βFξ

φψ∫Ωξ
e−βFξ

,Fξ aξ ξ

(z) = − log (det[∇ ∇ξ] dσ, (z) = ∇ a∇ξd ,Fξ
1
β ∫ (z)ξ−1

e−βV ξ⊤ )−1/2 aξ ∫ (z)ξ−1
ξ⊤ μz

μz μ| (z)ξ−1

Error estimate for all :k ⩾ 1

0 ⩽ − ⩽ ∇ a∇ [ − ∘ ξ] .λξ
k λk

1
β ∫ ( )ξ−1 Ωξ

[ − ∘ ξ]uj uξ
j

⊤
uj uξ

j e−βV

Rates  correspond to rates for an effective dynamics in . Shape perturbation results apply verbatim if  and .

Dynamical interpretation

λξ
k,Ωξ

ℝm ξ ∈ ( , )3,∞ ℝd ℝm rank∇ξ ≡ m

d = (− ∇ + div ) ( ) dt + ( d .Z ξ
t aξ Fξ

1
β

aξ Z ξ
t

2
β
‾‾

√ aξ Z ξ
t )1/2 Bt
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Example: solvated Alanine dipeptide
Consider alanine-dipeptide in solution .(d = 1857)

We use standard dihedral angles  as a CV.ξ = (ϕ, ψ)

Computed effective diffusion tensor ( ).aξ

As  are thermodynamic quantities, can be computed efficiently with enhanced sampling methods. Here, umbrella sampling using
Tinker-HP and Colvars.

,Fξ aξ
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Shape-optimization results
Shape-gradient ascent, implemented with FreeFem++.

Convergence of the Galerkin objective. Behavior of eigenvalues throughout the ascent iterations.
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Shape-optimization results
Degeneracy-aware steepest ascent method implemented in FreeFem++.

Initial and optimized domains, associated effective QSDs.
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Quantifying gains in the original objective
Measure gain in timescale separation with respect to reference state definition, in a practical dynamical setting (underdamped Langevin
dynamics).

Simulate Fleming-Viot process (in a modded Tinker-HP with 50 replicas), sampling initial configurations in transition regions.

-marginal of the QSD for .ξ ( )z5 -marginal for  around .ξ Ω∗
ξ z5
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Inference of decorrelation timescale
For the various ensembles of initial conditions, infer decorrelation rate at the level of histogram convergence.

Free-energy basin ( ).γ = 2 ps−1 Optimized state ( ).γ = 2 ps−1

16



Comparison of free-energy basin and optimized state
State Exit rate  ( ) Decorrelation rate

( )
Ratio Mixing time ( ,

)
±1.96σ ps−1

ps−1
±1.96σ ps

tol = 0.05
( ) (γ = 1 )z5 ps−1 5.6 × ± 1.6 ×10−3 10−4 0.49 88.1 ± 2.5 5.8

 (γ = 1 )Ω∗
ξ ps−1 1.8 × ± 8 ×10−3 10−5 0.33 177.5 ± 7.7 7.8

( ) (γ = 2 )z5 ps−1 5.4 × ± 1.4 ×10−3 10−4 0.46 85.3 ± 2.3 7.1
 (γ = 2 )Ω∗

ξ ps−1 1.8 × ± 8.5 ×10−3 10−5 0.33 187.0 ± 9.0 8.4
( ) (γ = 5 )z5 ps−1 5.1 × ± 1.4 ×10−3 10−4 0.39 76.9 ± 2.2 9.0

 (γ = 5 )Ω∗
ξ ps−1 1.5 × ± 8 ×10−3 10−5 0.34 233.0 ± 13.0 10.8

( ) (γ = 10 )z5 ps−1 4.2 × ± 1.4 ×10−3 10−4 0.3 70.4 ± 2.3 11.1
 (γ = 10 )Ω∗

ξ ps−1 1.2 × ± 7.8 ×10−3 10−5 0.27 230.0 ± 15.0 12.1
( ) (γ = 50 )z5 ps−1 2.0 × ± 1.2 ×10−3 10−4 0.088 44.0 ± 2.6 41.2

 (γ = 50 )Ω∗
ξ ps−1 3.3 × ± 4.7 ×10−4 10−5 0.077 233.0 ± 33.0 55.0

Throughout range of of conditions, optimized state definition leads to  increase in timescale separation with respect to
reference state.

≈ 2 − 5×
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Asymptotic optimization methodology in the low-temperature limit
Introduce a parametric family of domains , jointly parametrized by the asymptotic parameter  and the shape parameter

.
(Ωβ,α)α∈,β>0 β

α
Compute quantitative asymptotics of the objective:

for some explicit  in the limit .

= (β, α)(1 + o(1))( )λ2 Ωβ,α
( )λ1 Ωβ,α

 β → +∞
Optimize  with respect to  (the optimal parameter may itself depend on ). α β
Main difficulty is to compute spectral asymptotics for domains which change with the temperature.

Equivalent to the semiclassical analysis of the Witten Laplacian

with -dependent Dirichlet boundary conditions.

− = − Δ + |∇V − ΔVe−βV/2βeβV/2 1
β

β
4 |2 1

2

ℏ := 1/β
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Main geometric assumption
We restrict to , assume  is a smooth Morse function (non-degenerate Hessians at critical points), and  with

.
a = Id V ⊂ Ωβ

CritV = { , … , }| z0 zN−1

Assume the following limit is well-defined in  for each .(−∞, +∞] 0 ⩽ i < N

= ( ), (x) = { .αi lim
β→∞

β‾‾√ σΩβ zi σΩβ

−d(x, ∂ ),Ωβ
d(x, ∂ )Ωβ

x ∈ ,Ωβ
x ∈  ∖ Ωβ

If ,  is far from the boundary, and if not, it is close.= +∞αi zi

Assume there exists a function  such that

where the sets  constrain the geometry of the boundary near the  in a specific way.

δ : → (0, ε(V))ℝ+

δ(β) ≫ 1/ , (β) ⊆ B( , δ(β)) ∩ ⊆ (β),β‾‾√ −
i zi Ωβ +

i

±
i zi
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Main geometric assumption
In the drawing,  are the two capped balls, , and

 is an eigenvector of .
±

i γ(β) ≪ 1/ β‾‾√
v(i)

1 V( )∇2 zi

If  is an index 1 saddle points, we assume  is the unique
eigenvector for the negative eigenvalue.

zi v(i)
1

Boundary near a saddle  level set of the position along the
minimum energy path through the saddle.

≈zi

Standard settings (  satisfying a transversality condition)
are included.

= ΩΩβ
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First-order behavior for the full spectrum

For any , it holds

where  is the -th (temperature independent) eigenvalue of a direct sum of local harmonic
models

acting on the half-space  with Dirichlet boundary conditions.

Theorem: Harmonic approximation (Blassel, Lelièvre, and Stoltz ( )):2025a

k

= ,lim
β→∞

λk,Ωβ λH
k

λH
k k

= , = β(x − ∇ ( )(x − )/4 − ΔV( )/2 − Δ,H α
β ⨁

i=0

N−1
H (i),αi

β H (i),αi
β zi)⊤ V 2 zi zi zi

1
β

{(x − < /β}zi)⊤v(i)
1 α(i)

Assume only one minimum  and index 1 saddle points .

where ground-state energy of  acting on  with Dirichlet boundary
conditions and -th eigenvalue of .

Example

z0 , … ,z1 zN−1

0, min [ , | | ( + )] ,λ1,Ωβ − →−−
β→∞

λ2,Ωβ − →−−
β→∞

ν(0)
1 min

0<i<N
ν(i)

1 μ
0,α(i) | |/2ν(i)

1√
1
2

=μ0,θ ( − )1
2 x2 ∂2

x (−∞, θ)
=ν(i)

k k V( )∇2 zi

In particular, quantitative asymptotics for the decorrelation rate
 whenever .−λ2,Ωβ λ1,Ωβ > 0λH

2
Theorem says that  is well-approximated by a block-diagonal
operator, with each block corresponds to a local harmonic model
of  around a critical point of .

−β

−β V
Proof relies on the construction of approximate eigenvectors,
harmonic quasimodes, constructed using Dirichlet quantum
oscillators localized around each critical point.

Adaptation of a method of Simon ( ) from semiclassical
analysis to the (new) setting of moving Dirichlet boundaries.

1983

Dependence on shape parameter : eigenvalues of 1D Dirichlet
harmonic oscillators.

α
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Further geometric assumptions
We now restrict the setting to the case of only one minimum far from the boundary  (plus arbitrary other critical points).z0

Harmonic approximation then implies , .→ 0λ1,Ωβ → > 0λ2,Ωβ λH
2,α

Define , where  basin of attraction of  for .= min {V(z), z ∈ ∂ [ ∖ ( )]}V ∗ ℝd z0 ( ) =z0 z0 (t) = −∇V(X(t))X ′

The minimizers are index one saddle points .{ , i ∈ }zi Imin

Assume also the energetic condition  for all  and some .(( ) ∩ {V < + cδ(β } ∖ B( , δ(β))) ⊂z0 V ∗ )2 ∪i∈Imin zi Ωβ β c > 0
This condition avoids the presence of generalized saddle points with energy , ensuring that the likeliest exit pathway is intrinsic
to , and not an artefact of the domain geometry.

⩽ V ∗

V
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Modified Eyring-Kramers formula

In the limit , it holds

where

Theorem (Blassel, Lelièvre, and Stoltz ( )):2025a

β → ∞

= (1 + (1/ )) ,λ1,Ωβ e−β( −V( ))V ∗ z0

⎡

⎣
⎢⎢⎢ ∑

i∈Imin

| |ν(i)
1

2πΦ (| )ν(i)
1 |

1
2 α(i)

det V( )∇2 z0
det V( )∣∣ ∇2 zi ∣∣
‾ ‾‾‾‾‾‾‾‾‾‾‾‾

√ β‾‾√
⎤

⎦
⎥⎥⎥

Φ(x) = dt.1
2π‾‾‾√ ∫

x

−∞
e−

t2
2

Result provides sharp quantitative estimate for the metastable
exit rate  Dependence on  is only in the prefactor .λ1,Ωβ α P
Adds geometric corrections to standard Eyring-Kramers
( , ) and ( , ) formulas.α = +∞ P = 1 α = 0 P = 1/2
Proof relies on the construction of very precise approximations for

, inspired by works in potential theory (Bovier, Gayrard, and
Klein ( )) and semiclassical analysis of Witten Laplacians (Le
Peutrec and Nectoux ( )).

u1,Ωβ

2005
2021
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Illustration on a 1D energy well

Potential with several domains.
. Parameters

.
= ( − / , + / )Ωβ,α z1 α1 β‾‾√ z2 α2 β‾‾√

α = (0.5, 0.3), (1.0,−0.3), (0.0, 0.0)

We aim to maximize

with respect to . Equivalently, maximize

where  is the basin of attraction for the local minimum .
According to the results of Blassel, Lelièvre, and Stoltz ( ),

 pointwise, where  is a complicated but fully
explicit function of .

( ) − ( )λ2,β Ωβ,α λ1,β Ωβ,α
( )λ1,β Ωβ,α

α

(α) = ,Jβ
( ) ( )λ2,β Ωβ,α λ1,β Ωβ,0
( ) ( )λ1,β Ωβ,α λ2,β Ωβ,0

Ωβ,0 z0
2025a

 Jβ − →−−−
β→+∞

J∞ J∞
α
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Semiclassical approximation of shape-optimization landscape

Shape-optimization landscape for  for . Basin of
attraction: . Optimal domain: .

(α)Jβ β = 10
+ ×

Semiclassical approximation . Semiclassical optimizer: .(α)J∞ ×
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Thank you !

 on shape-sensitive semiclassical asymptotics.Preprint

Numerical shape-optimization preprint available soon.

Some bibliography on the next slide.
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