Rounding Error Analysis of an Orbital Collision Probability Evaluation Algorithm

12^e Biennale Française des Mathématiques Appliquées et Industrielles Carcans Maubuisson June 2–6, 2025

Denis Arzelier^{*}, Florent Bréhard[†], Mioara Joldes^{*}, Marc Mezzarobba[°]

* LAAS–CNRS, Toulouse, France † CNRS, Univ. Lille, CRIStAL, France

° CNRS, LIX, Palaiseau, France

∑ arzelier@laas.fr; florent.brehard@univ-lille.fr; mmjoldes@laas.fr; marc@mezzarobba.net

Recurrences and Validated Numerics

- Recurrences are ubiquitous in computer-aided mathematics: spectral methods for functional equations, dynamical systems, combinatorics, asymptotics, ...
- They were extensively studied in numerical analysis: Olver, Miller, Wimp, Clenshaw, Henrici, Barrio, ...
- Challenges for validated numerics: numerical instability, wrapping effect \Rightarrow Tight bounds are difficult to obtain
- M. Mezzarobba. Rounding Error Analysis of Linear Recurrences Using Generating Series. ETNA - Electronic Transactions on Numerical Analysis, 2023
 ⇒ Connect the total error to the analytic properties of the initial problem
 ⇒ Deduce a priori and realistic error bounds

1. Orbital Collision Probability Evaluation Algorithm

2. Roundoff Error Analysis using Majorizing Series

3. Numerical Examples

[Serra, Arzelier, Joldes, Lasserre, Rondepierre, Salvy – 2015]

- Assumptions for Short Term Encounter
- Extensively tested and approved by CNES
- implemented for both ground and onboard usage

$$\mathcal{P} = \iint_{x^2 + y^2 \leqslant R^2} \rho(x, y) dx dy$$

$$\rho(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left[-\frac{1}{2}\left(\frac{(x-x_m)^2}{\sigma_x^2} + \frac{(y-y_m)^2}{\sigma_y^2}\right)\right]$$

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1 **do** 5: $c_n = \frac{Q_1(n-1) + P_0}{(n+1)n} c_{n-1} - \frac{Q_2(n-2) + P_1}{(n+1)n^2} c_{n-2}$ + $\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3}-\frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

[Serra, Arzelier, Joldes, Lasserre, Rondepierre, Salvy – 2015]

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1 **do** 5: $c_n = \frac{Q_1(n-1) + P_0}{(n+1)n} c_{n-1} - \frac{Q_2(n-2) + P_1}{(n+1)n^2} c_{n-2}$ $+\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3}-\frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

initial terms

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1 **do** 5: $c_n = \frac{Q_1(n-1) + P_0}{(n+1)n} c_{n-1} - \frac{Q_2(n-2) + P_1}{(n+1)n^2} c_{n-2}$ + $\frac{Q_3(n-3) + P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

initial terms

unroll the recurrence

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1 **do** 5: $c_n = \frac{Q_1(n-1) + P_0}{(n+1)n} c_{n-1} - \frac{Q_2(n-2) + P_1}{(n+1)n^2} c_{n-2}$ + $\frac{Q_3(n-3) + P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

initial terms

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $c_0 = \ldots; c_1 = \ldots; c_2 = \ldots; c_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1 **do** 5: $c_n = \frac{Q_1(n-1) + P_0}{(n+1)n} c_{n-1} - \frac{Q_2(n-2) + P_1}{(n+1)n^2} c_{n-2}$ $+\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3}-\frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for preconditioning to ensure $c_n \ge 0$ 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

initial terms

initial terms

sum the terms

How this algorithm works in a nutshell

How this algorithm works in a nutshell

Roundoff error bound for $|\widetilde{\mathcal{P}}_{o:N} - \mathcal{P}_{o:N}|$?

- standard binary64 (no interval arithmetic, no multiprecision)
 efficiency/architecture constraints
- N can be large! (N = 100, 1000, 10000, ...)
- $\Rightarrow\,$ A priori bounds using majorizing series techniques for round-off analysis of linear recurrences

$$c_{n} = \frac{Q_{1}(n-1) + P_{0}}{(n+1)n} c_{n-1} - \frac{Q_{2}(n-2) + P_{1}}{(n+1)n^{2}} c_{n-2} + \frac{Q_{3}(n-3) + P_{2}}{(n+1)n^{2}(n-1)} c_{n-3} - \frac{P_{3}}{(n+1)n^{2}(n-1)(n-2)} c_{n-4}$$

$$\mathcal{P}_{0:N} \stackrel{\text{def}}{=} \exp(-pR^{2}) \sum_{n=1}^{N-1} c_{n} \approx \mathcal{P}_{0:N}$$

1. Orbital Collision Probability Evaluation Algorithm

2. Roundoff Error Analysis using Majorizing Series

3. Numerical Examples

- Precision p binary floating-point arithmetic (e.g., p = 53 for binary64)
- $\bullet \ \ unbounded \ exponent \ range \qquad (\Rightarrow no \ underflow, no \ overflow)$
- round-to-nearest mode for arithmetic operations $\star \in \{+, -, \times, \div, \sqrt{}\}$

$$\widetilde{a \star b} = (a \star b)(1 + e)$$
 $|e| \leq u \stackrel{\text{def}}{=} 2^{-p}$

- Precision p binary floating-point arithmetic (e.g., p = 53 for binary64)
- unbounded exponent range $(\Rightarrow no underflow, no overflow)$
- round-to-nearest mode for arithmetic operations $\star \in \{+, -, \times, \div, \sqrt{}\}$

- Precision p binary floating-point arithmetic (e.g., p = 53 for binary64)
- unbounded exponent range $(\Rightarrow no underflow, no overflow)$
- round-to-nearest mode for arithmetic operations $\star \in \{+, -, \times, \div, \sqrt{}\}$

- Precision p binary floating-point arithmetic (e.g., p = 53 for binary64)
- unbounded exponent range $(\Rightarrow no underflow, no overflow)$
- round-to-nearest mode for arithmetic operations $\star \in \{+,-,\times,\div,\sqrt\}$

- Precision p binary floating-point arithmetic (e.g., p = 53 for binary64)
- unbounded exponent range $(\Rightarrow no underflow, no overflow)$
- round-to-nearest mode for arithmetic operations $\star \in \{+, -, \times, \div, \sqrt{}\}$

Example
$(a \oplus b \otimes c) - (a + bc) =$
$ae^{\oplus} + bc[(1+e^{\oplus})(1+e^{\otimes})-1]$
$ e^{\oplus} , e^{\otimes} \leqslant u \stackrel{\mathrm{def}}{=} 2^{-p}$

- Precision p binary floating-point arithmetic (e.g., p = 53 for binary64)
- unbounded exponent range $(\Rightarrow no underflow, no overflow)$
- round-to-nearest mode for arithmetic operations $\star \in \{+,-,\times,\div,\sqrt\}$

Notation ([Higham, Accuracy and Stability of Numerical Algorithms – 2002])

$$(1 + e_1) \dots (1 + e_n) \stackrel{\text{def}}{=} (1 + \theta_n) \qquad |\theta_n| \leqslant \gamma_n \stackrel{\text{def}}{=} \frac{nu}{1 - nu}$$

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1: **do** 5: $c_n = \frac{Q_1(n-1)+P_0}{(n+1)n}c_{n-1} - \frac{Q_2(n-2)+P_1}{(n+1)n^2}c_{n-2}$ + $\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $c_0 = \ldots; c_1 = \ldots; c_2 = \ldots; c_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1: **do** 5: $c_n = \frac{Q_1(n-1)+P_0}{(n+1)n}c_{n-1} - \frac{Q_2(n-2)+P_1}{(n+1)n^2}c_{n-2}$ + $\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

Initial errors

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1: **do** 5: $C_n = \frac{Q_1(n-1)+P_0}{(n+1)n} C_{n-1} - \frac{Q_2(n-2)+P_1}{(n+1)n^2} C_{n-2}$ + $\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

Initial errors Local errors

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1: **do** 5: $C_n = \frac{Q_1(n-1)+P_0}{(n+1)n} C_{n-1} - \frac{Q_2(n-2)+P_1}{(n+1)n^2} C_{n-2}$ + $\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

Initial errors Local errors \rightarrow Global errors

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $C_0 = \ldots; C_1 = \ldots; C_2 = \ldots; C_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1; **do** 5: $c_n = \frac{Q_1(n-1)+P_0}{(n+1)n}c_{n-1} - \frac{Q_2(n-2)+P_1}{(n+1)n^2}c_{n-2}$ + $\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

Summation errors

Require: FP Parameters *R*, σ_x , σ_y , x_m , y_m ; number of terms *N*. **Ensure:** $\mathcal{P}_{o:N}$ – truncated series approximation of \mathcal{P} . 1: Evaluate $p, \phi, \omega_x, \omega_y, Q_1, Q_2, Q_3, P_0, P_1, P_2, P_3;$ 2: $c_0 = \ldots; c_1 = \ldots; c_2 = \ldots; c_3 = \ldots;$ 3: $s = c_0 + c_1 + c_2 + c_3$; 4: **for** n = 4 to N - 1: **do** 5: $C_n = \frac{Q_1(n-1)+P_0}{(n+1)n} C_{n-1} - \frac{Q_2(n-2)+P_1}{(n+1)n^2} C_{n-2}$ + $\frac{Q_3(n-3)+P_2}{(n+1)n^2(n-1)}c_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)}c_{n-4};$ 6: $s = s + c_n$: 7: end for 8: return $\mathcal{P}_{o:N} = \exp(-pR^2)s$.

Initial errors + Local errors \rightarrow Global errors + Summation errors

Initial and local errors using standard roundoff analysis

• Initial errors (loop-independent parameters):

$$\begin{split} \omega_x &= \frac{x_m^2}{4\sigma_x^4} \quad \rightsquigarrow \quad \widetilde{\omega}_x = \frac{1}{4} \cdot (x_m \otimes x_m) \oslash \left((\sigma_x \otimes \sigma_x) \otimes (\sigma_x \otimes \sigma_x) \right) \\ &\Rightarrow \quad |\widetilde{\omega}_x - \omega_x| \leqslant \gamma_5 \omega_x \end{split}$$

 \rightsquigarrow Similar bounds for the other parameters \rightsquigarrow P_i, Q_i

Initial and local errors using standard roundoff analysis

• Initial errors (loop-independent parameters):

$$\begin{split} \omega_x &= \frac{x_m^2}{4\sigma_x^4} \quad \rightsquigarrow \quad \widetilde{\omega}_x = \frac{1}{4} \cdot (x_m \otimes x_m) \oslash \left((\sigma_x \otimes \sigma_x) \otimes (\sigma_x \otimes \sigma_x) \right) \\ &\Rightarrow \quad |\widetilde{\omega}_x - \omega_x| \leqslant \gamma_5 \omega_x \end{split}$$

- \rightsquigarrow Similar bounds for the other parameters \rightsquigarrow P_i, Q_i
- Local errors ε_n (at each iteration):

$$\begin{split} \widetilde{c}_n &= \frac{Q_1(n-1) + P_0}{(n+1)n} \widetilde{c}_{n-1} - \frac{Q_2(n-2) + P_1}{(n+1)n^2} \widetilde{c}_{n-2} \\ &+ \frac{Q_3(n-3) + P_2}{(n+1)n^2(n-1)} \widetilde{c}_{n-3} - \frac{P_3}{(n+1)n^2(n-1)(n-2)} \widetilde{c}_{n-4} + \varepsilon_n \end{split}$$

$$\begin{split} |\varepsilon_{n}| &\leqslant \gamma_{40} \left(\frac{Q_{1}(n-1) + P_{0}}{(n+1)n} |\tilde{c}_{n-1}| + \frac{Q_{2}(n-2) + P_{1}}{(n+1)n^{2}} |\tilde{c}_{n-2}| \right. \\ &+ \frac{Q_{3}(n-3) + P_{2}}{(n+1)n^{2}(n-1)} |\tilde{c}_{n-3}| + \frac{P_{3}}{(n+1)n^{2}(n-1)(n-2)} |\tilde{c}_{n-4}| \right) \end{split}$$

Global error: Outline

following [Mezzarobba 2020]

$$f(\xi) = \sum_{n=0}^{+\infty} c_n \xi^n \qquad \delta(\xi) = \widetilde{f}(\xi) - f(\xi) = \sum_{n=0}^{+\infty} (\widetilde{c}_n - c_n) \xi^n \\ \widetilde{f}(\lambda) = \sum_{n=0}^{+\infty} n! c_n \lambda^n \downarrow \qquad [\widetilde{\delta}(\lambda) \longrightarrow \delta(\xi)] \uparrow [solve \text{ for } \widetilde{\delta}(\lambda)]$$

$$\widehat{f}'(\lambda) - \varphi(\lambda) \widehat{f}(\lambda) = 0 \qquad \widehat{\delta}'(\lambda) - \varphi(\lambda) \widehat{\delta}(\lambda) = \widehat{\epsilon}(\lambda) \\ \downarrow \qquad [c_n - \Box c_{n-1} + \Box c_{n-2} \\ - \Box c_{n-3} + \Box c_{n-4} = 0 \qquad \delta_n - \Box \delta_{n-1} + \Box \delta_{n-2} \\ - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\ \downarrow \qquad [c_n - \Box \delta_{n-3} + \Box \delta_{n-4} = \varepsilon_n] \\$$

Global error: Differential inequality

Recall that for $\tilde{c}_n = c_n + \delta_n$,

$$\delta_n - \Box \, \delta_{n-1} + \Box \, \delta_{n-2} - \Box \, \delta_{n-3} + \Box \, \delta_{n-4} = \varepsilon_n$$

$$|\varepsilon_n| \leq \gamma_{40} \left(\Box |\tilde{c}_{n-1}| + \Box |\tilde{c}_{n-2}| + \Box |\tilde{c}_{n-3}| + \Box |\tilde{c}_{n-4}| \right) \qquad \gamma_{40} \approx 40u$$

Global error: Differential inequality

Recall that for $\tilde{c}_n = c_n + \delta_n$,

$$\delta_n - \Box \, \delta_{n-1} + \Box \, \delta_{n-2} - \Box \, \delta_{n-3} + \Box \, \delta_{n-4} = \varepsilon_n$$

$$|\varepsilon_n| \leq \gamma_{40} \left(\Box |\tilde{c}_{n-1}| + \Box |\tilde{c}_{n-2}| + \Box |\tilde{c}_{n-3}| + \Box |\tilde{c}_{n-4}| \right) \qquad \gamma_{40} \approx 40u$$

Hence we obtain a differential inequality:

 $\widehat{\delta}'(\lambda) - \varphi(\lambda)\widehat{\delta}(\lambda) \ll \gamma_{40} \left(\psi(\lambda)\widehat{f}(\lambda) + \underbrace{(\dots)\widehat{\delta}'(\lambda) + (\dots)\widehat{\delta}(\lambda)}_{\text{small}} \right)$ $[\psi(\lambda) = \{\text{an explicit rational function in } \lambda\}]$

 $a(\lambda) \ll b(\lambda)$ means $|a_n| \leqslant |b_n|$ for all $n \ge 0$

Global error: Linearized bound

• Differential inequality:

$$\widehat{f}'(\lambda) - \varphi(\lambda)\widehat{f}(\lambda) = 0$$

$$\widehat{\delta}'(\lambda) - \varphi(\lambda)\widehat{\delta}(\lambda) \ll \operatorname{4ou} \psi(\lambda)\widehat{f}(\lambda) + \mathfrak{o}(u)$$

 $[\psi(\lambda) \text{ an explicit rational function}]$

• Solve to obtain an upper bound (neglecting o(u) terms):

$$\widehat{\delta}(\lambda) \ll \left(\delta_{o} + 40u \Psi(\lambda)\right) \widehat{f}(\lambda) \qquad \qquad \Psi(\lambda) \stackrel{\text{def}}{=} \int_{o}^{\lambda} \psi(\sigma) d\sigma$$

Global error: Linearized bound

• Differential inequality:

$$\widehat{f}'(\lambda) - \varphi(\lambda)\widehat{f}(\lambda) = 0$$

$$\widehat{\delta}'(\lambda) - \varphi(\lambda)\widehat{\delta}(\lambda) \ll \operatorname{4ou} \psi(\lambda)\widehat{f}(\lambda) + \operatorname{o}(u)$$

 $[\psi(\lambda)$ an explicit rational function]

• Solve to obtain an upper bound (neglecting o(u) terms):

$$\widehat{\delta}(\lambda) \ll \left(\delta_{\circ} + 40u \Psi(\lambda) \right) \widehat{f}(\lambda) \qquad \Psi(\lambda) \stackrel{\text{def}}{=} \int_{\circ}^{\lambda} \psi(\sigma) d\sigma$$

relative error on \widetilde{c}_{\circ} propagation of local errors

Global error: Linearized bound

• Differential inequality:

$$\widehat{f}'(\lambda) - \varphi(\lambda)\widehat{f}(\lambda) = 0$$

$$\widehat{\delta}'(\lambda) - \varphi(\lambda)\widehat{\delta}(\lambda) \ll \operatorname{4ou} \psi(\lambda)\widehat{f}(\lambda) + \operatorname{o}(u)$$

 $[\psi(\lambda) \text{ an explicit rational function}]$

• Solve to obtain an upper bound (neglecting o(u) terms):

Total roundoff error

Linearized bound

$$\frac{|\widetilde{\mathcal{P}}_{0:N} - \mathcal{P}_{0:N}|}{\mathcal{P}} \leqslant \left(\frac{2x_m^2}{\sigma_x^2} + \frac{2y_m^2}{\sigma_y^2} + 40C + N + 2pR^2 + 8\right)u + o(u)$$

$$C \stackrel{\text{def}}{=} \frac{7}{96}p^3\omega_x R^8 + \left(\frac{7}{12}p + \frac{1}{2}\omega_x\right)p^2 R^6 + \left(\frac{9}{4}p + \frac{5}{4}\omega_x + \frac{15}{4}\omega_y\right)pR^4 + \left(\frac{3}{2}p + \omega_x + 3\omega_y\right)R^2$$

[initial error on \tilde{c}_0 global error on \tilde{c}_n summation error final rescaling]

- The required number of terms N depends on the parameters $(\rightarrow$ truncation error bound), and $N \leq C$ in practice
- We also derived a rigorous (i.e., not linearized) total error bound
- We proved that the 64-bit exponent emulation is sufficient to avoid overflows for realistic parameter ranges

1. Orbital Collision Probability Evaluation Algorithm

2. Roundoff Error Analysis using Majorizing Series

3. Numerical Examples

$$R = 5$$
, $\sigma_x = 50$, $\sigma_y = 1$, $x_m = 10$, $y_m = 0 \Rightarrow N = 101$

$$R = 5$$
, $\sigma_x = 50$, $\sigma_y = 1$, $x_m = 10$, $y_m = 0 \Rightarrow N = 101$

$$R = 5$$
, $\sigma_x = 50$, $\sigma_y = 1$, $x_m = 10$, $y_m = 0 \Rightarrow N = 101$

$$R = 5$$
, $\sigma_x = 50$, $\sigma_y = 1$, $x_m = 10$, $y_m = 0 \Rightarrow N = 101$

float binary64	interval binary64	our bound		
$1.26 \cdot 10^2 u$	$3.85 \cdot 10^{13} u$	$6.05 \cdot 10^4 u$		
$= 1.40 \cdot 10^{-14}$	$= 4.27 \cdot 10^{-3}$	$= 6.72 \cdot 10^{-12}$		

Obtained relative errors

Some more numerical examples

Case	Input parameters (m)					Relative Error				
#	σ_x	σ_y	R	x_m	y_m	Ν	Exact	MPFI	(Lin. Bound)	Full Bound
Test 1	50	1	5	10	0	101	1.40e-14	4.27e-3	6.72e-12	6.72e-12
Chan 1	50	25	5	10	0	49	5.86e-17	5.86e-15	6.48e-15	6.48e-15
Chan 5	3,000	1,000	10	1,000	0	49	2.02e-16	7.41e-15	6.35e-15	6.35e-15
Chan 6	3,000	1,000	10	0	1,000	48	1.18e-16	5.61e-15	6.44e-15	6.44e-15
Alfano 3	114.25	1.41	15	0.15	-3.88	1627	4.14e-12	1.15e54	7.07e-10	7.08e-10
Alfano 5	177.81	0.03	10	2.12	-1.22	>1e7	4.35e-4	4e69380	4.87e-01	3.60e+00
Custom 1	1	1	10	1	1	543	6.96e-16	1.78e-13	1.53e-09	1.53e-09
Custom 2	1	0.8	10	1	1	969	2.73e-14	4.7e23	5.59e-09	5.60e-09
Custom 3	1	0.5	10	1	1	3805	7.74e-14	4.4e174	8.95e-08	9.00e-08
Custom 4	1	0.2	10	1	1	95139	4.6e-12	2e1483	2.13e-05	2.22e-05
Custom 5	1	0.1	10	1	1	> 1e7	3.63e-8	1e6155	1.36e-03	1.59e-03
Custom 6	0.5	0.1	10	1	1	> 1e7	1.49e-11	2e5988	1.66e-02	1.95e-02
Custom 7	1	0.05	10	1	1	> 1e7	3.00e-6	4e24841	8.68e-02	1.70e-01
Custom 8	0.2	0.05	10	1	1	> 1e7	1.28e-9	2e23506	4.05e+01	7.40e+17

Take Away Message

- Successful application of Mezzarobba's FP error analysis to this POC algorithm \Rightarrow a priori closed-form relative error bounds
- Provides rigorous and realistic error bounds that could not be obtained using plain interval arithmetic
- An interesting alternative to fixed-point based a posteriori validation: the rigorous computation part is "constant time" (i.e., not proportional to *N*)
- However, preliminary pen-and-paper work is still substantial, the class of treated recurrences is limited (linear?), and error bounds are "worst-case".