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Framework

Approximation on Spherical Grids using Spherical Harmonics

Data approximation on the sphere, such as interpolation

Spectral solvers for PDEs on the sphere, e.g. the advection equation
▶ M. Brachet’s talk

Supported by Les Enveloppes Fluides et l’Environnement

LEFE-MANU call, Section “Océan-Atmosphère”,

from the French National program AAP-INSU2024
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Equiangular Cubed Sphere

CSN :=
{
ρ(±1, u, v), ρ(u,±1, v), ρ(u, v ,±1);

u = tan iπ
2N , v = tan jπ

2N , −
N
2 ≤ i , j ≤ N

2

}
, ρ(x) = x

|x |

Angular step: π
2N

|CSN | = 6N2 + 2 nodes

Fig. Equiangular arcs of great circles on S2,
obtained by radial projection of a meshed cir-
cumscribed cube.

R. Sadourny, Conservative finite-difference approximations of the primitive equations on
quasi-uniform spherical grids, Monthly Weather Review, 100 (1972), pp. 136-144.

J.-B. Bellet, Symmetry group of the equiangular cubed sphere, Quarterly of Applied
Mathematics, 80 (2022), pp. 69-86.
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Some quadrature rules on the Cubed Sphere∫
S2
f (x) dσ ≈

∑
x∈CSN

ω(x)f (x) =: Qω(f ), ω : CSN → R

Bivariate angular trapezoidal rules on the 6 faces
▶ 4th/6th order of numerical accuracy if corrected on the 8 corners

M. Brachet, Schémas compacts hermitiens sur la Sphère: applications en climatologie et
océanographie numérique, PhD thesis, Université de Lorraine, 2018.

Interpolatory quadrature rules (with numerical linear algebra)
▶ Numerical degree of accuracy

2N + 1, if N = 2p + 1 ̸= 3,

2N + 3, if N = 2p ̸= 4,

4N − 1, if 1 ≤ N ≤ 4.

▶ Extra-accuracy with N = 3, 4

J.-B. Bellet, M. Brachet, and J.-P. Croisille, Quadrature and symmetry on the Cubed
Sphere, Journal of Computational and Applied Mathematics, 409 (2022).
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Focus on the Cubed Sphere CSN with 1 ≤ N ≤ 4

Lemma (lemma of the meridians)

For 1 ≤ N ≤ 4, the grid CSN is included in a set of equiangular meridians,

CSN ⊂ MN := {x(θ, ϕ), with − π
2 ≤ θ ≤ π

2 , ϕ ≡ π
4 [ π

2N ]},

with x(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ), −π
2 ≤ θ ≤ π

2 , ϕ ∈ R.
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Great circles and Lagrange interpolation on CSN

Theorem (Lagrange interpolation on CSN with degree 4N − 1)

Let N ≥ 1. For every y : CSN → R, there exists f ∈ P4N−1 which
interpolates y , i.e. f (x) = y(x), x ∈ CSN .

Proof. Lagrange-kind basis:

Lξ(x) =
1 + ξ · x

2

∏
α∈A
ξ·α ̸=0

x · α
ξ · α

∈ P4N−1;

Lξ(ξ
′) = δξ(ξ

′), ξ, ξ′ ∈ CSN .

J.-B. Bellet. Mathematical and numerical methods for
three-dimensional reflective tomography and for
approximation on the sphere. Habilitation thesis,
Université de Lorraine, 2023.
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Main result: optimal rule on low-resolution Cubed Spheres

Recall that Qω(f ) =
∑

x∈CSN ω(x)f (x), ω : CSN → R.

Theorem (Optimal quadrature rule on CSN , 1 ≤ N ≤ 4)

Fix 1 ≤ N ≤ 4, and ω0(x) =
∫
S2 Lx(y) dσ, x ∈ CSN .

1 The weight ω0 is positive, has octahedral symmetry, and is given in
the next slide.

2 The quadrature rule Qω0 has the degree of accuracy 4N − 1.

3 The rule Qω0 is the optimal one, i.e. any rule Qω with ω ̸= ω0 has a
smaller degree of accuracy.

J.-B. Bellet, M. Brachet, and J.-P. Croisille, Quadrature on the Cubed Sphere: the
low-resolution case, hal-04807672 (2024).
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Analytical expression of the optimal quadrature weights

N x1 x2 x3 ω0(x1, x2, x3) |CSN | Degree

1 1√
3

1√
3

1√
3

π
2

8 3

1√
3

1√
3

1√
3

9π
70

2 1√
2

1√
2

0 16π
105

26 7

1 0 0 4π
21

1√
3

1√
3

1√
3

9π
140

3 1√
2+t2

1√
2+t2

t√
2+t2

61π
840

− 3π
√
3

560

1√
1+2t2

t√
1+2t2

t√
1+2t2

61π
840

+ 3π
√
3

560
56 11

with t = 2−
√
3

1√
3

1√
3

1√
3

729π
20020

1√
2+s2

1√
2+s2

s√
2+s2

2053π
51480

− 183π
√

2
80080

4 1√
1+2s2

s√
1+2s2

s√
1+2s2

2053π
51480

+ 183π
√

2
80080

98 15

1√
2

1√
2

0 512π
15015

1√
1+s2

s√
1+s2

0 2048π
45045

1 0 0 736π
15015

with s =
√
2− 1
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Comments on the rules

Same rules, with a new approach, without rounding errors, as

J.-B. Bellet, M. Brachet, and J.-P. Croisille, Quadrature and symmetry on the Cubed
Sphere, Journal of Computational and Applied Mathematics, 409 (2022)

N = 1: 8 nodes, degree 3 (cube)
▶ uniform rule, corresponding to areas of the projected octahedron
▶ tensor product, trapezoidal rule in ϕ times Gauss-Legendre rule in x3

K. Atkinson and W. Han. Spherical harmonics and approximations on the unit
sphere: an introduction, volume 2044. Springer Science & Business Media, 2012.

N = 2: 26 nodes, degree 7 (cube, octahedron, cuboctahedron)
▶ available in double precision as a Lebedev’s rule in

J. Burkardt. Sphere Lebedev Rule. Online, last revised on 2010.
https: // people. math. sc. edu/ Burkardt/ c_ src/ sphere_ lebedev_ rule/ sphere_ lebedev_ rule. html

N = 3: 56 nodes, degree 11, N = 4: 98 nodes, degree 15
▶ Exact formulas that seem new
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Proof, part I
Assume that ω : CSN → R is such that Qω is exact on P4N−1. Compute ω.

a ω = ω0: ω(x) = Qω(Lx) =
∫
S2 Lx dσ = ω0(x), x ∈ CSN

b octahedral invariance: for any octahedral symmetry R,
ω(Rx) = Qω(Lx(R

⊺·)) =
∫
S2 Lx(R

⊺·) dσ =
∫
S2 Lx dσ = ω(x), x ∈ CSN

c computation of ω: for any z = x(θz , ϕz) ∈ TN ,

ω(z) =

∫ π
2

−π
2

∫ 7π
4

−π
4

Lz(x(θ, ϕ))︸ ︷︷ ︸
trigo. polynom., deg. ≤4N−1

dϕ

︸ ︷︷ ︸
trapezoidal rule in ϕ, step π

2N

cos θdθ

=
π

2N

∫ π
2

−π
2

[Lz(x(θ, ϕz) + Lz(x(θ, ϕz + π))] cos θ︸ ︷︷ ︸
trigo. polynom., deg. ≤4N

dθ

= · · · (symbolic computation in Maple)

d ω is positive: observation
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Proof, part II

Consider the weight ω0 in the table, extended to CSN by octahedral
invariance. We check that Qω0 is exact on P4N−1.

a Qω0 is exact on P4N−1, if, and only if, it is exact on the following
invariant polynomials,

N Polynomials vα1 v
β
2 with degree 4α+ 6β ≤ 4N − 1

1 1
2 1, v1, v2
3 1, v1, v2, v

2
1 , v1v2

4 1, v1, v2, v
2
1 , v1v2, v

3
1 , v

2
2 , v

2
1 v2

v1 = x21x
2
2 + x21x

2
3 + x22x

2
3 , v2 = x21x

2
2x

2
3

V. I. Lebedev. Quadratures on a sphere. USSR Computational Mathematics and
Mathematical Physics, 16(2):10–24, 1976.

b Check by symbolic computation in Maple
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Proof, part III
The degree of accuracy 4N − 1 is optimal due to a counterexample of
degree 4N.

a Consider a polynomial p ∈ P2N such that p|MN
= 0,

p(x(θ, ϕ)) = Y−2N
2N (x(θ, ϕ− π

4 )) = C cos2N θ sin 2N(ϕ− π
4 ),

with C a constant such that ∥p∥2L2 = 1.

b Due to the lemma of the meridians, CSN ⊂ MN , so p|CSN = 0.
c Then, p2 ∈ P4N ,

∫
S2 p

2 dσ = 1, but ∀ω : CSN → R, Qω(p
2) = 0.

J.-B. Bellet and J.-P. Croisille, Least Squares Spherical Harmonics Approximation on the
Cubed Sphere, Journal of Computational and Applied Mathematics, 429 (2023).
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About the linear system satisfied by the weight

The octahedral rule Qω0 integrates the listed invariant polynomials.

This gives a linear system satisfied by the weights ω0(x), x ∈ TN .

Reduced linear system satisfied by the octahedral weight

N Number of equations Number of unknowns

1 1 1
2 3 3
3 5 3
4 8 6

Extra-accuracy for N = 3, 4
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Comparison with Lebedev’s octahedral rules

V. I. Lebedev. Values of the nodes and weights of ninth to seventeenth order Gauss-Markov
quadrature formulae invariant under the octahedron group with inversion. USSR
Computational Mathematics and Mathematical Physics, 15(1):44–51, 1975.

J. Burkardt. Sphere Lebedev Rule. Online (. . .)
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Integration of test functions

i fi (x, y, z)

1 exp(x)

2 3
4
exp[− (9x−2)2

4

− (9y−2)2

4

− (9z−2)2

4
]

+ 3
4
exp[− (9x+1)2

49
− 9y+1

10
− 9z+1

10
]

1
2
exp[− (9x−7)2

4

− (9y−3)2

4

− (9z−5)2

4
]

− 1
5
exp[− (9x−4)2

1

− (9y−7)2

1

− (9z−5)2

1
]

3 cos(3 arccos z)
×1(3 arccos z ≤ π

2
)

4 1(z ≥ 1
2
)

(Maximum error on 1000 random orthogonal transformations of the grids)
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Conclusion

Optimal quadrature rule on CSN , 1 ≤ N ≤ 4

6N2 + 2 nodes, degree of accuracy 4N − 1

Simple approach, based on the specific geometry of the grid

Not so far from Lebedev’s octahedral rules

Application: weighted least squares

inf
f ∈Y2N−1

∑
x∈CSN

ω(x)|f (x)− y(x)|2, y : CSN → R

Open questions

Further explanation of the extra-accuracy for N = 3, 4 ?

Tiling of the sphere with areas given by the quadrature weights ?

Optimal quadrature rule on CSN with N ≥ 5 ?
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