Quadrature optimale sur des Cubed Spheres de faible résolution Optimal quadrature rule on low-resolution Cubed Spheres

[†]Laboratoire de Mathématiques et Applications, Université de Poitiers, CNRS, F-86073 Poitiers, France [‡]Université de Lorraine, CNRS, IECL, F-57000 Metz, France

Congrès SMAI 2025 3 juin 2025, Carcans Maubuisson

Framework

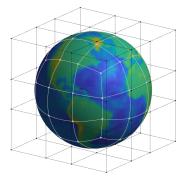
Approximation on Spherical Grids using Spherical Harmonics

- Data approximation on the sphere, such as interpolation
- Spectral solvers for PDEs on the sphere, e.g. the advection equation
 - M. Brachet's talk

Supported by Les Enveloppes Fluides et l'Environnement

- LEFE-MANU call, Section "Océan-Atmosphère",
- from the French National program AAP-INSU2024

Equiangular Cubed Sphere $CS_N := \left\{ \rho(\pm 1, u, v), \ \rho(u, \pm 1, v), \ \rho(u, v, \pm 1); \\ u = \tan \frac{i\pi}{2N}, \ v = \tan \frac{j\pi}{2N}, \ -\frac{N}{2} \le i, j \le \frac{N}{2} \right\}, \quad \rho(x) = \frac{x}{|x|}$



- Angular step: $\frac{\pi}{2N}$
- $|CS_N| = 6N^2 + 2$ nodes

Fig. Equiangular arcs of great circles on $\mathbb{S}^2,$ obtained by radial projection of a meshed circumscribed cube.

R. Sadourny, Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Monthly Weather Review, 100 (1972), pp. 136-144.

J.-B. Bellet, Symmetry group of the equiangular cubed sphere, Quarterly of Applied Mathematics, 80 (2022), pp. 69-86.

Some quadrature rules on the Cubed Sphere

$$\int_{\mathbb{S}^2} f(x) \, \mathsf{d}\sigma \approx \sum_{x \in \mathsf{CS}_N} \omega(x) f(x) =: Q_\omega(f), \quad \omega : \mathsf{CS}_N \to \mathbb{R}$$

• Bivariate angular trapezoidal rules on the 6 faces

4th/6th order of numerical accuracy if corrected on the 8 corners

M. Brachet, Schémas compacts hermitiens sur la Sphère: applications en climatologie et océanographie numérique, PhD thesis, Université de Lorraine, 2018.

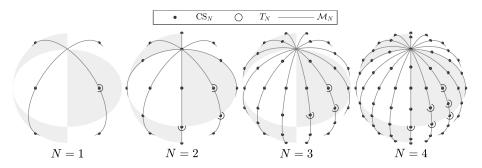
- Interpolatory quadrature rules (with numerical linear algebra)
 - Numerical degree of accuracy

2N + 1, if $N = 2p + 1 \neq 3$, 2N + 3, if $N = 2p \neq 4$, 4N - 1, if $1 \le N \le 4$.

Extra-accuracy with N = 3,4

J.-B. Bellet, M. Brachet, and J.-P. Croisille, Quadrature and symmetry on the Cubed Sphere, Journal of Computational and Applied Mathematics, 409 (2022).

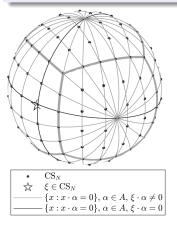
Focus on the Cubed Sphere CS_N with $1 \le N \le 4$



Lemma (lemma of the meridians) For $1 \le N \le 4$, the grid CS_N is included in a set of equiangular meridians, $CS_N \subset \mathcal{M}_N := \{x(\theta, \phi), \text{ with } -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \phi \equiv \frac{\pi}{4} [\frac{\pi}{2N}]\},$ with $x(\theta, \phi) = (\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta), -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \phi \in \mathbb{R}.$

Great circles and Lagrange interpolation on CS_N

Theorem (Lagrange interpolation on CS_N with degree 4N - 1) Let $N \ge 1$. For every $y : CS_N \to \mathbb{R}$, there exists $f \in \mathcal{P}_{4N-1}$ which interpolates y, i.e. f(x) = y(x), $x \in CS_N$.



Proof. Lagrange-kind basis:

$$L_{\xi}(x) = \frac{1+\xi \cdot x}{2} \prod_{\substack{\alpha \in A \\ \xi \cdot \alpha \neq 0}} \frac{x \cdot \alpha}{\xi \cdot \alpha} \in \mathcal{P}_{4N-1};$$

$$L_{\xi}(\xi') = \delta_{\xi}(\xi'), \, \xi, \xi' \in \mathsf{CS}_N.$$

J.-B. Bellet. Mathematical and numerical methods for three-dimensional reflective tomography and for approximation on the sphere. Habilitation thesis, Université de Lorraine, 2023. Main result: optimal rule on low-resolution Cubed Spheres

Recall that
$$Q_{\omega}(f) = \sum_{x \in CS_N} \omega(x) f(x), \quad \omega : CS_N \to \mathbb{R}.$$

Theorem (Optimal quadrature rule on CS_N , $1 \le N \le 4$)

Fix $1 \le N \le 4$, and $\omega_0(x) = \int_{\mathbb{S}^2} L_x(y) d\sigma$, $x \in CS_N$.

- The weight ω₀ is positive, has octahedral symmetry, and is given in the next slide.
- 2 The quadrature rule Q_{ω_0} has the degree of accuracy 4N 1.
- Solution The rule Q_{ω_0} is the optimal one, i.e. any rule Q_{ω} with $\omega \neq \omega_0$ has a smaller degree of accuracy.

J.-B. Bellet, M. Brachet, and J.-P. Croisille, Quadrature on the Cubed Sphere: the low-resolution case, hal-04807672 (2024).

Analytical expression of the optimal quadrature weights

Ν	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	$\omega_0(x_1, x_2, x_3)$	CS _N	Degree
1	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$\frac{\pi}{2}$	8	3
2	$\begin{array}{c} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} \\ 1 \end{array}$	$\begin{array}{c} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array}$	$ \begin{array}{c} \frac{1}{\sqrt{3}} \\ 0 \\ 0 \end{array} $	$\frac{\frac{9\pi}{70}}{\frac{16\pi}{105}}$ $\frac{\frac{4\pi}{21}}{\frac{21}{21}}$	26	7
3	$\frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2+t^2}}}$ $\frac{1}{\sqrt{1+2t^2}}$	$\frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2+t^2}}}$ $\frac{t}{\sqrt{1+2t^2}}$		$\begin{array}{c} \frac{9\pi}{140} \\ \frac{61\pi}{840} - \frac{3\pi\sqrt{3}}{560} \\ \frac{61\pi}{840} + \frac{3\pi\sqrt{3}}{560} \\ \text{with } t = 2 - \sqrt{3} \end{array}$	56	11
4	$ \frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2+s^{2}}}} \\ \frac{\frac{1}{\sqrt{1+2s^{2}}}}{\frac{1}{\sqrt{2}}} \\ \frac{\frac{1}{\sqrt{2}}}{\sqrt{1+s^{2}}} \\ 1 $	$ \frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2+s^2}}} \frac{s}{\sqrt{1+2s^2}} \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \frac{\frac{1}{\sqrt{2}}}{\sqrt{1+s^2}} \frac{1}{0} $	$ \frac{\frac{1}{\sqrt{3}}}{\frac{s}{\sqrt{2+s^2}}} \frac{\frac{s}{\sqrt{1+2s^2}}}{\frac{s}{\sqrt{1+2s^2}}} \frac{0}{0} $	$\frac{736\pi}{15015}$	98	15
				with $s = \sqrt{2} - 1$		

8/16

Comments on the rules

• Same rules, with a new approach, without rounding errors, as

J.-B. Bellet, M. Brachet, and J.-P. Croisille, Quadrature and symmetry on the Cubed Sphere, Journal of Computational and Applied Mathematics, 409 (2022)

- N = 1: 8 nodes, degree 3
 - uniform rule, corresponding to areas of the projected octahedron
 - tensor product, trapezoidal rule in ϕ times Gauss-Legendre rule in x_3

K. Atkinson and W. Han. Spherical harmonics and approximations on the unit sphere: an introduction, volume 2044. Springer Science & Business Media, 2012.

- N = 2: 26 nodes, degree 7 (cube, octahedron, cuboctahedron)
 - available in double precision as a Lebedev's rule in

J. Burkardt. Sphere Lebedev Rule. Online, last revised on 2010. https://people.math.sc.edu/Burkardt/c_src/sphere_lebedev_rule/sphere_lebedev_rule.html

- N = 3: 56 nodes, degree 11, N = 4: 98 nodes, degree 15
 - Exact formulas that seem new

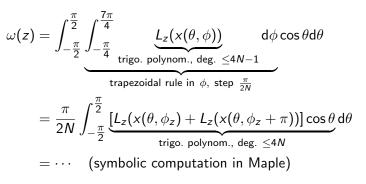
(cube)

Proof, part I

Assume that $\omega : \mathsf{CS}_N \to \mathbb{R}$ is such that Q_ω is exact on \mathcal{P}_{4N-1} . Compute ω .

•
$$\omega = \omega_0$$
: $\omega(x) = Q_\omega(L_x) = \int_{\mathbb{S}^2} L_x \, \mathrm{d}\sigma = \omega_0(x), \ x \in \mathsf{CS}_N$

- octahedral invariance: for any octahedral symmetry R, $\omega(Rx) = Q_{\omega}(L_x(R^{\mathsf{T}} \cdot)) = \int_{\mathbb{S}^2} L_x(R^{\mathsf{T}} \cdot) d\sigma = \int_{\mathbb{S}^2} L_x d\sigma = \omega(x), x \in \mathsf{CS}_N$
- S computation of ω : for any $z = x(\theta_z, \phi_z) \in T_N$,



 ω is positive: observation

Proof, part II

Consider the weight ω_0 in the table, extended to CS_N by octahedral invariance. We check that Q_{ω_0} is exact on \mathcal{P}_{4N-1} .

• Q_{ω_0} is exact on \mathcal{P}_{4N-1} , if, and only if, it is exact on the following invariant polynomials,

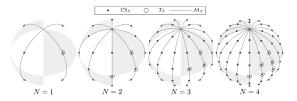
 $\begin{array}{c|cccc} N & \text{Polynomials } v_1^{\alpha} v_2^{\beta} \text{ with degree } 4\alpha + 6\beta \leq 4N-1 \\ \hline 1 & 1 \\ 2 & 1, v_1, v_2 \\ 3 & 1, v_1, v_2, v_1^2, v_1 v_2 \\ 4 & 1, v_1, v_2, v_1^2, v_1 v_2, v_1^3, v_2^2, v_1^2 v_2 \\ \hline v_1 = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2, \quad v_2 = x_1^2 x_2^2 x_3^2 \end{array}$

V. I. Lebedev. Quadratures on a sphere. USSR Computational Mathematics and Mathematical Physics, 16(2):10–24, 1976.

Check by symbolic computation in Maple

Proof, part III

The degree of accuracy 4N - 1 is optimal due to a counterexample of degree 4N.



) Consider a polynomial $p \in \mathcal{P}_{2N}$ such that $p|_{\mathcal{M}_N} = 0$,

$$p(x(\theta,\phi)) = Y_{2N}^{-2N}(x(\theta,\phi-\frac{\pi}{4})) = C\cos^{2N}\theta\sin 2N(\phi-\frac{\pi}{4}),$$

with C a constant such that $||p||_{L^2}^2 = 1$.

Due to the lemma of the meridians, CS_N ⊂ M_N, so p|_{CS_N} = 0.
Then, p² ∈ P_{4N}, ∫_{S²} p² dσ = 1, but ∀ω : CS_N → ℝ, Q_ω(p²) = 0.

J.-B. Bellet and J.-P. Croisille, Least Squares Spherical Harmonics Approximation on the Cubed Sphere, Journal of Computational and Applied Mathematics, 429 (2023).

About the linear system satisfied by the weight

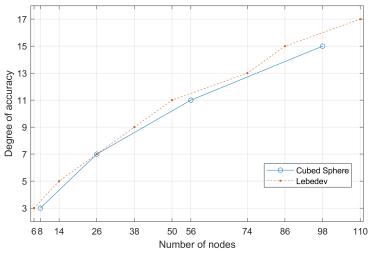
- The octahedral rule Q_{ω_0} integrates the listed invariant polynomials.
- This gives a linear system satisfied by the weights $\omega_0(x), x \in T_N$.

Reduced linear system satisfied by the octahedral weight

N	Number of equations	Number of unknowns
1	1	1
2	3	3
3	5	3
4	8	6

• Extra-accuracy for N = 3, 4

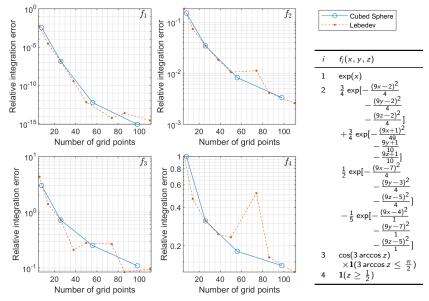
Comparison with Lebedev's octahedral rules



V. I. Lebedev. Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion. *USSR Computational Mathematics and Mathematical Physics*, 15(1):44–51, 1975.

J. Burkardt. Sphere Lebedev Rule. Online (...)

Integration of test functions



(Maximum error on 1000 random orthogonal transformations of the grids)

Conclusion

Optimal quadrature rule on CS_N , $1 \le N \le 4$

- $6N^2 + 2$ nodes, degree of accuracy 4N 1
- Simple approach, based on the specific geometry of the grid
- Not so far from Lebedev's octahedral rules
- Application: weighted least squares

$$\inf_{f \in \mathcal{Y}_{2N-1}} \sum_{x \in \mathsf{CS}_N} \omega(x) |f(x) - y(x)|^2, \quad y : \mathsf{CS}_N \to \mathbb{R}$$

Open questions

- Further explanation of the extra-accuracy for N = 3, 4?
- Tiling of the sphere with areas given by the quadrature weights ?
- Optimal quadrature rule on CS_N with $N \ge 5$?