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Introduction

Introduction

Ambition: be capable to "fully" analyse a dynamic model.

Genesis of the work: Existence of many steady states in
nonlinear cross-diffusion model [BP24]

Joint work with Maxime Breden, Olivier Hénot and Antoine Zurek



Introduction Nonlinear Diffusion

A general dynamics

Gu=F), u=utx)eR, xeQ=(01),
anu = 0, X € 0Q,

o F(u) = 3(A(U)Vu) + R(u), H*(Q,R) — L*(Q,R)
o A(u) is the diffusion matrix, H*(Q,R) — H'(Q, R)
o R(u) is the reaction term, L2(Q,R) — L?(Q,R).

Let H3,(Q.R) = {u € H*(Q,R), du =0 on 9Q}.




Overview on Stability

Overview on Stability

The linearized equation around the steady state @i is:

) {dtv = L, where £(&i) = DF().

Vli=o = V0 € HZ(Q,R),

Lyapunov Functional Strategy

Strategy: aiming to find a positive-definite self-adjoint operator
P such that there exists y > 0 and:

d - e
d_t<Pv’ Viziar) = ((PL(O) + L) PV, V)2 (qr) < —H||V||fz(Q’R),

for any solution v to the linearized equation.




Overview on Stability
Theorem on Stability

Theorem

Let P be positive and self-adjoint. Define Q = —(PL(0) + L({)*P).
If Q > u, with u > 0, then there exists Aq > 0 such that:

o(L(0)) c{ze C,Re(z) < —Ap}.
Furthermore, there exists & > 0 such that |[u°® — |2 ) implies

lut,-) = blli2qr) e 0, exponentially

with ule—o = u® € H2(Q, R).

Proof.
The main ideas comes from [Dat70]. O




Existence of the Steady-State Sequence spaces

Framework

Fourier Series Let p = 1,2, we define

Representation

N
For Q = (0, 1), we seek an ¢ ={ueR", |lulle <+oo},
isolated stationary solution u

as the Fourier series: where
uix) = u k - X), ”U”e’l = |uk|7
(X) kEEN k cos(nR - X) kZGN
1
2 2 2
. ulll, =u2+= > ul.
which belongs to H2 (Q, R). Iullz = o+ 5 kEZN:* k

Projection on finite spaces: N € N, 7=Nu := (ug)p-o.n-
Remark: (£',+,x, ||-||,1) is a Banach algebra, where * is the
discrete convolution on RN, (€2, +, (-,-),2) is an Hilbert space.

Sequence Spaces



Existence of the Steady-State Newton-Kantorich Theorem

Consider G : u — u — AF(u), with A is an injective linear operator
such that AL(l) ~ I and i € 7=K¢7, an finite approximate zero of
F.

Goal: existence of i, such that G(ii) = 0.

Newton-Kantorovich Theorem

Assume there exist Y, Z;, Z,, and r* > 0 satisfying:

(3a) IAF (@) <Y,
(3b) I =AL@) |z < 21

(Bc) NA(L(u) - L@l ey < Z2, Yu € B(@,r7).
Then, for all r such that

1-Z1 - =2Z1)% - -
! \/(1 2)° = 2Y2, <r < min r*,‘I Z ,
Z; Z;

(43) 71 <1,
(4b)  2YZ, < (1-29)%

(5)

there exists a unique steady state & of (1) such that ||i — @ < r.




Existence of the Steady-State Newton-Kantorich Theorem

The operator A

Rewrite £(u) = AA(U) + &B(u) + C(u) (assume we have
polynomial nonlinearities at most). .

Since 0 € 7=K¢" we have A(d), B(b), C(0) belong to 7=K¢" for a
certain K > K.

Cooking recipe for A:

Aec B

a<NAx=N ~ (ﬂSN.E(U)HSN)_1 in Maty y(R),
A=g<NAz=N 4 gA=" — z=NgA-T7=N

with a ~ A(@)~"in 7=K¢.

[¢]

o

o

(¢]




Existence of the Steady-State Newton-Kantorich Theorem

The bounds

Derived from (3a), (3b) and (3c),

(6) Y = [|An=KF (@)l 1,

M Zr=max (|0 - AL@T KI5, s - aA@ I

1 _ 1 _
+yllalle 8@l + WIIGIIMIC(U)II@),

(8) Zy = Comax(J|AAZ="]l, llall¢1)




Existence of the Steady-State Newton-Kantorich Theorem

Resume

For the existence of a steady state of (1) :

o Find o € 7=K¢" such that F(&1) ~ 0 — sometimes the most
difficult part.

o Build A and deduce Y, Z;, Z, from (6), (7) and (8).

o Check (4a) and (4b) to obtain r from (5) and existence of &.




Existence of the Steady-State Application

Application. See [Bre22]

F(u) = AU? +u—u*+g,
L(uh=2Auxh)+h-2uxh, ™

1.45

j{(u) =2u, 1.40
1354

N = 40 and K = 20, 1.30

Y =178x107", o
Z;=1.88x1073 Figure: Plot of &.

Zy = 1.64.

We conclude about the ex- A=
istence of &1 and

|O—ip <1.82x10° 2 =r.



Method to get stability

Guiding idea

We want Q = —(PL(&) + L(&)*P) > u, for a certain u > 0. For a
large M e N, L(0)7x>M ~ AA(7)7>M so we can expect to build Q
st. QM ~ —Ax™M,

Cooking recipe for P:
o Pe B
o 7<Npx=N a solution of
Xe=NL(@a=N+ =N L(@)n=N)y'X = ~Ax=N+ 70, in Maty y(R),
o P=aNpg=N4p_ g=<Npg=N
o with p e 7K1 st. gy := p x A(0) + AT)* * p ~ -1, in £,

Indeed, for this P,
(9) — (PL(@) + L@)*P)yx™™ = (g2 + 1 - V+ o)™,

with qo, g1, gy € 7<% ¢



Method to get stability

P positive

Let 4 > 0, let g € #=K¢7 invertible (i.e g > 0).

q(P - g = q(p - g+ x="*q(P=N — =N (p — =) gz ="K

= (q(p—p)q - 1) + x> NK

+ ﬂsN+k + ﬂsN+I'<q(PsN _ ”sN(p _'u)ﬂsN)qﬂsNH'(.

::SSN-H'(

Letg G'ﬂSkﬂ suchthat ||p —p—q72||p < p.
If S<N*K'is a positive matrix then P is positive-definite operator.




Method to get stability

Proof of Proposition

If S<N+K is positive then SSN+K = (CsN+K)*C<N+K \ye define
C = (CSN+K 4 g>N+KYg=1 S0 for all u € €2,

(Pu,u)pe — pllull% = (P — ul = C*C)u, u)p2 + (C*Cu, u),2
=((pP—p—q ) xu,u)p+|ICull%
>((p-p-q2)u,u)
> —[lp—p =g |l=llull},
> =|lp-p—q 2l allull?




Method to get stability Build P

Application

We have A(0) = 2a.
We find p € 7=K¢' st.

0.1 p*&zl(fl)+ ﬂ(ﬂ)**p X
0.00 Q @ _1, with K = 20.

Fix 1 = 1073, we find

qenskelst.
Figure: Enclosure of o(S<N+K) Ip—p—q 2l = 4.94%
10—12
a<Npg=N
pP= 2K




Method to get stability Q positive-definite

Analysis of o(Q)

We can't deal with Q = —(P.L(0) + L(0)*P) but we have a better
understanding of Q := —(PL(0) + L(U)*P).

From (9), we find u., s.t. a|(07r>"") c {z € C,Re(2) > uw} by

@<”>M[I
studying the Gershgorin disks associated to Q7™ — radii to
bound

For Q=M we compute exactly the Gershgorin disks of the matrix.

Finally, from (8) we deduce
I1A71(Q - Q)llz(e1) < 2lIPll ey Cer := Co, it means that

o(Q) c G D(Ag, CqR?) where {A; € R, (Ag) increasing } = o(Q).
k=0



Method to get stability Q positive-definite

Application

We compute qo, g1, > € n=<K¢".

With M = 60, we deduce Cq = 3.15x10~"? and py., = 25767.
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Figure: Enclosure of o(Q=M) .




Method to get stability Q positive-definite

Resume

For the stability of & solution of (1):
o Build P and check with Proposition that P is positive.

o Build Q and analyse o(Q) and deduce y > 0 such that
c(Q) c {ze C,Re(2) = u}.

o Since Q is self-adjoint and has a compact resolvent, we have
Q> p.




Conclusion and Future Work

Conclusion & Outlook

We have a complete method to prove the existence of a steady
state and analyse stability

We can generalize this method to n species and d dimension.

We are finishing a case of study in 2-species and 2-dimensions.

We want to find more complexe systems to see the limitations of
the method.




Conclusion and Future Work

Thank You!
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