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How to improve expressivity of convex ReLU neural networks?
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The ability to implement convex functions with neural networks is crucial in many applications, from
learning convex regularizers for inverse problems tasks [7] to learning optimal transport maps [5, 2].
The dominant approach, widely adopted by the community, is to use Input Convex Neural Networks
(ICNNs) [1]. Their main advantage is that they require only slight changes to standard neural architec-
tures, namely an additional nonnegativity constraint on the weight matrices. While this architecture
is straightforward to implement and guarantees convexity by design, ICNNs demonstrate poor ex-
pressivity when scaling up [6]. In fact, the nonnegativity constraint of ICNNs can seem somewhat
arbitrary, questioning whether it is the only way to enforce convexity or if there exist many more
convex neural networks that are not ICNNs. The authors in [3] provide a first answer, showing that
any convex function defined over a compact domain and implemented by a ReLU neural network, i.e.,
a piecewise affine function, can also be implemented by an ICNN. Yet, their constructive proof yields
an architecture which has as many layers as affine pieces in the function, and only one neuron per
layer, thus far from a practical architecture. Following this work, we study in [4] the expressivity of
ICNNs for a given architecture (i.e., set width and depth). We fully characterize convex ReLU neural
networks and show that there exist convex functions implemented by a given ReLU network that are
not implementable by any ICNN with the same architecture.
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