Monotonicity results for solutions of nonlinear Poisson equation in epigraphs

Nicolas Beuvin, LAMFA

12 ième biennale française des mathématiques appliquées et industrielles

05 Juin 2025

joint work with Alberto Farina (LAMFA-UPJV) and Berardino Sciunzi (University of Calabria)

Presentation of the problem wo relevant results

1 Introduction

- Presentation of the problem
- Two relevant results

2 Monotonicity results in an epigraph

- Results and comments
- Sketch of the proof : The moving plane method

3 Liouville-type result

Presentation of the problem Two relevant results

1 Introduction

- Presentation of the problem
- Two relevant results

2 Monotonicity results in an epigraph

- Results and comments
- Sketch of the proof : The moving plane method

3 Liouville-type result

Presentation of the problem Two relevant results

Nonlinear Poisson equation :

$$\begin{aligned} & -\Delta u = f(u) & \text{in} \quad \Omega, \\ & u > 0 & \text{in} \quad \Omega, \\ & u = 0 & \text{on} \quad \partial\Omega, \end{aligned}$$

(NPE)

where

• $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a classical solution.

Presentation of the problem Two relevant results

Nonlinear Poisson equation :

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(NPE)

where

- $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a classical solution.
- $f:[0,+\infty) \to \mathbb{R}$ is a locally Lipschitz continuous function, with

 $f(0) \ge 0.$

Presentation of the problem Two relevant results

Nonlinear Poisson equation :

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
 (NPE)

where

- $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a classical solution.
- $f:[0,+\infty) \to \mathbb{R}$ is a locally Lipschitz continuous function, with

 $f(0) \geq 0$.

• $\Omega \subset \mathbb{R}^N$ is an epigraph bounded from below, i.e

$$\Omega:=\{x=(x',x_N)\in\mathbb{R}^N, x_N>g(x')\},\$$

where $g: \mathbb{R}^{N-1} \to \mathbb{R}$ is a uniformly continuous function and bounded from below.

Introduction

Presentation of the problem Two relevant results

Monotonicity results in an epigraph Liouville-type result

Nonlinear Poisson equation :

Presentation of the problem Two relevant results

Nonlinear Poisson equation :

• <u>Aim</u>: Prove the monotonicity of the solution of (NPE) (that is $\frac{\partial u}{\partial x_N} > 0$ in Ω).

Presentation of the problem Two relevant results

Nonlinear Poisson equation :

- <u>Aim</u>: Prove the monotonicity of the solution of (NPE) (that is $\frac{\partial u}{\partial x_N} > 0$ in Ω).
- <u>Why</u> :
 - Qualitatives properties (as one-dimensional symmetry),

Presentation of the problem Two relevant results

Nonlinear Poisson equation :

- <u>Aim</u>: Prove the monotonicity of the solution of (NPE) (that is $\frac{\partial u}{\partial x_N} > 0$ in Ω).
- <u>Why</u> :
 - Qualitatives properties (as one-dimensional symmetry),
 - Liouville-type theorems.

Presentation of the problem Two relevant results

Some classic results

• If Ω is a ball :

 B. GIDAS, W-M. NI, L. NIRENBERG. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 (1979).

Presentation of the problem Two relevant results

Some classic results

- If Ω is a ball :
 - B. GIDAS, W-M. NI, L. NIRENBERG. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 (1979).
- **2** If $\Omega = \mathbb{R}^N$:
 - J. SERRIN, H. ZOU. Symmetry of ground states of quasilinear elliptic equations. Arch. Ration. Mech. Anal., 148, 265-290, (1999).

Presentation of the problem Two relevant results

Some classic results

- If Ω is a ball :
 - B. GIDAS, W-M. NI, L. NIRENBERG. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 (1979).
- **2** If $\Omega = \mathbb{R}^N$:
 - J. SERRIN, H. ZOU. Symmetry of ground states of quasilinear elliptic equations. Arch. Ration. Mech. Anal., 148, 265-290, (1999).
- If $\Omega = \mathbb{R}^N_+$:
 - H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Further qualitative properties for elliptic equations in unbouded domains. Ann., Scuola Norm. Sup. Pisa Cl. Sci., Vol XXV. (1997).

Presentation of the problem Two relevant results

Introduction

- Presentation of the problem
- Two relevant results

2 Monotonicity results in an epigraph

- Results and comments
- Sketch of the proof : The moving plane method

3 Liouville-type result

• A.FARINA Some results about semilinear elliptic problems on *half-spaces*. Mathematics in Engineering. 709-721.

Theorem (A. Farina (2020))

Assume $N \ge 2$, f a locally Lipschitz function such that $f(0) \ge 0$ and $u \in C^2(\mathbb{R}^N_+) \cap C^0(\overline{\mathbb{R}^N_+})$ be a solution of (NPE). Suppose that

 $\forall t > 0 \quad \exists C(t) > 0, \quad 0 \leq u \leq C(t) \text{ on } \mathbb{R}^{N-1} \times [0, t].$

Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in \mathbb{R}^N_+ .

Presentation of the problem Two relevant results

• H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Comm. Pure Appl. Math. 1089–1111. 1997

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume $N \geq 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (NPE). Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Presentation of the problem Two relevant results

• H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Comm. Pure Appl. Math. 1089–1111. 1997

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume $N \ge 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (NPE). Then u is monotone, i.e., $\frac{\partial u}{\partial x_u} > 0$ in Ω .

Presentation of the problem Two relevant results

• H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Comm. Pure Appl. Math. 1089–1111. 1997

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume $N \ge 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (NPE). Then u is monotone, i.e., $\frac{\partial u}{\partial x_u} > 0$ in Ω .

Example :

$$f(x)=x-x^3.$$

1 Introduction

- Presentation of the problem
- Two relevant results

2 Monotonicity results in an epigraph

- Results and comments
- Sketch of the proof : The moving plane method

3 Liouville-type result

1 Introduction

- Presentation of the problem
- Two relevant results

2 Monotonicity results in an epigraph

- Results and comments
- Sketch of the proof : The moving plane method

3 Liouville-type result

Results and comments Sketch of the proof : The moving plane method

Monotonicity results and comments

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a globally Lipschitz continuous epigraph bounded from below, $f \in Lip_{loc}([0, +\infty))$ with $f(0) \ge 0$ and let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a solution of (NPE). Assume that

Results and comments Sketch of the proof : The moving plane method

Monotonicity results and comments

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a globally Lipschitz continuous epigraph bounded from below, $f \in Lip_{loc}([0, +\infty))$ with $f(0) \ge 0$ and let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a solution of (NPE). Assume that

 $\forall R > 0 \quad \exists C(R) > 0, \quad 0 < u \leq C(R) \text{ on } \Omega \cap \{0 < x_N < R\}.$

Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Monotonicity results and comments

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a globally Lipschitz continuous epigraph bounded from below, $f \in Lip_{loc}([0, +\infty))$ with $f(0) \ge 0$ and let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a solution of (NPE). Assume that

 $\forall R > 0 \quad \exists C(R) > 0, \quad 0 < u \leq C(R) \text{ on } \Omega \cap \{0 < x_N < R\}.$

Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

1- If $f \in Lip([0, +\infty))$ and u has at most exponential growth on finite strips, that is, for any R > 0,

$$\exists A(R), B(R) > 0, \ u(x) \leq Ae^{B|x|} \quad \forall x \in \Omega \cap \{0 < x_N < R\}.$$

then the theorem holds true.

Monotonicity results and comments

2- If f is not locally Lipschitz continuous then the previous theorem does not hold.

 $f \alpha$ -hölder (0 < α < 1)

Monotonicity results and comments

2- If f is not locally Lipschitz continuous then the previous theorem does not hold.

1 Introduction

- Presentation of the problem
- Two relevant results

2 Monotonicity results in an epigraph

- Results and comments
- Sketch of the proof : The moving plane method

3 Liouville-type result

Results and comments Sketch of the proof : The moving plane method

Notations

•
$$\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N : g(x') < x_N < b\},\$$

Results and comments Sketch of the proof : The moving plane method

Notations

•
$$\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N : g(x') < x_N < b\},\$$

Results and comments Sketch of the proof : The moving plane method

Notations

•
$$\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N : g(x') < x_N < b\},\$$

• $\forall x = (x', x_N) \in \Sigma_b^g, \qquad u_b(x) = u(x', 2b - x_N).$

Aim : Prove that

$$\Lambda := \{t > 0 : u \leqslant u_{\theta} \text{ in } \Sigma_{\theta}^{g}, \forall 0 < \theta < t\} = \mathbb{R}^{+}_{*}.$$

Results and comments Sketch of the proof : The moving plane method

$$\frac{\partial u}{\partial x_N}(x',b) = \lim_{h \to 0} \frac{u(x',b+h) - u(x',b)}{h},$$

Results and comments Sketch of the proof : The moving plane method

$$\Lambda = \mathbb{R}^+_*$$

Results and comments Sketch of the proof : The moving plane method

$$\Lambda = \mathbb{R}^+_*$$

$$u(x) \le u_{b+\frac{h}{2}}(x) \quad \text{for all } x \in \Sigma_{b+\frac{h}{2}}^{s}.$$

In particular, as $(x', b) \in \Sigma_{b}^{g}$, we get $u(x', b) \le u(x', b+h)$.

Results and comments Sketch of the proof : The moving plane method

$\Lambda \neq \emptyset$

Theorem (B., Farina, Sciunzi (2025))

Assume $N \ge 2$, $X \subset \mathbb{R}^{N-1} \times [a, b]$ an open set, let M > 0 and $u, v \in C^2(X) \cap C^0(\overline{X})$ such that

$$egin{aligned} & -\Delta u - f(u) \leq -\Delta v - f(v) & \mbox{in} & X, \ & |u|, |v| \leq M & \mbox{in} & X, \ & u \leq v & \mbox{on} & \partial X \end{aligned}$$

Then, there exists $\alpha = \alpha(f, M) > 0$ such that

$$\sup_{\mathbf{x}'\in\mathbb{R}^{N-1}}(\mathcal{L}^1((\{\mathbf{x}'\}\times\mathbb{R}e_N)\cap X))<\alpha\implies u\leq v \text{ in } X.$$

 $\Lambda \neq \emptyset$

Theorem (B., Farina, Sciunzi (2025))

Assume $N \ge 2$, $X \subset \mathbb{R}^{N-1} \times [a, b]$ an open set, let M > 0 and $u, v \in C^2(X) \cap C^0(\overline{X})$ such that

$$egin{array}{lll} & -\Delta u - f(u) \leq -\Delta v - f(v) & \mbox{in} & X, \ & |u|, |v| \leq M & \mbox{in} & X, \ & u \leq v & \mbox{on} & \partial X \end{array}$$

Then, there exists $\alpha = \alpha(f, M) > 0$ such that

$$\sup_{x'\in\mathbb{R}^{N-1}} (\mathcal{L}^1((\{x'\}\times\mathbb{R}e_N)\cap X)) < \alpha \implies u \le v \text{ in } X.$$

Consequence : $(0, \alpha) \subset \Lambda$.

Results and comments Sketch of the proof : The moving plane method

$\tilde{t} := \sup \Lambda = +\infty$

Proposition ($ilde{t} < +\infty$)

For every $\delta \in (0, \frac{\tilde{t}}{2})$ there is $\varepsilon(\delta) > 0$ such that

$$\forall \varepsilon \in (0, \varepsilon(\delta))$$
 $u \leq u_{\tilde{t}+\varepsilon}$ in $\Sigma^{g}_{\delta, \tilde{t}-\delta}$.

Results and comments Sketch of the proof : The moving plane method

Hopf's Lemma

Let $(x', b) \in \Omega$ and $X \subset \Sigma_b^g$ the connected component such that $(x', b) \in \partial X$.

Results and comments Sketch of the proof : The moving plane method

Hopf's Lemma

Theorem (Hopf's lemma)

Let $w \in C^2(X) \cap C^0(\overline{X})$ and $c \ge 0$ such that

$$\begin{cases} -\Delta w + cw \ge 0 & \text{in } X, \\ w \ge 0 & \text{in } X, \\ w(x', b) = 0. \end{cases}$$

If $w \not\equiv 0$ in X then

$$w > 0$$
 in X and $\frac{\partial w}{\partial x_N}(x', b) < 0.$

Hopf's Lemma

Applying the Hopf's lemma to $w = u_b - u$ which satisfies

$$w\geq 0 \quad ext{in } \Sigma^{g}_{b}, ext{ (since } \Lambda=\mathbb{R}^{+}_{*})$$

and

$$-\Delta w = -\Delta u_b + \Delta u = f(u_b) - f(u) \ge -L_{f,b}w$$
 in Σ_b^g .

Introduction Monotonicity results in an epigraph Liouville-type result Sketch of the proof : The moving plane method

Hopf's Lemma

Applying the Hopf's lemma to $w = u_b - u$ which satisfies

$$w\geq 0 \quad ext{in } \Sigma^g_b, \, (ext{since } \Lambda=\mathbb{R}^+_*)$$

and

$$-\Delta w = -\Delta u_b + \Delta u = f(u_b) - f(u) \ge -L_{f,b}w$$
 in Σ_b^g .

If $w \equiv 0$ in X then $u_b = u$ in X

Results and comments Sketch of the proof : The moving plane method

Hopf's Lemma

Hence $w \neq 0$ in X and as w = 0 on $\{x_N = b\}$.

$$0 > \frac{\partial w}{\partial x_N}(x',b) = -2\frac{\partial u}{\partial x_N}(x',b).$$

Results and comments Sketch of the proof : The moving plane method

Hopf's Lemma

Hence $w \not\equiv 0$ in X and as w = 0 on $\{x_N = b\}$.

$$0 > \frac{\partial w}{\partial x_N}(x',b) = -2\frac{\partial u}{\partial x_N}(x',b).$$

Therefore

$$\frac{\partial u}{\partial x_N}(x',b)>0.$$

1 Introduction

- Presentation of the problem
- Two relevant results

2 Monotonicity results in an epigraph

- Results and comments
- Sketch of the proof : The moving plane method

3 Liouville-type result

Theorem (B., Farina, Sciunzi (2025))

Let $\Omega \subset \mathbb{R}^N$ be a globally Lipschitz continuous epigraph bounded from below, and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution to

$$\left(egin{array}{ccc} -\Delta u = f(u) & in & \Omega, \ u \geq 0 & in & \Omega, \ u = 0 & on & \partial\Omega. \end{array}
ight.$$

Assume that $f \in C^1([0, +\infty))$, f(t) > 0 for t > 0 and $2 \le N \le 11$, then $u \equiv 0$ and f(0) = 0.

Theorem (B., Farina, Sciunzi (2025))

Let $\Omega \subset \mathbb{R}^N$ be a globally Lipschitz continuous epigraph bounded from below, and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution to

$$\left(egin{array}{ccc} -\Delta u = f(u) & in & \Omega, \ u \geq 0 & in & \Omega, \ u = 0 & on & \partial\Omega. \end{array}
ight.$$

Assume that $f \in C^1([0, +\infty))$, f(t) > 0 for t > 0 and $2 \le N \le 11$, then $u \equiv 0$ and f(0) = 0.

Corollary

Let $2 \le N \le 11$ and $\Omega \subset \mathbb{R}^N$ be a globally Lipschitz continuous epigraph bounded from below. If $f \in C^1([0, +\infty))$, satisfies f(t) > 0 for $t \ge 0$ then problem (NPE) does not admit any classical solutions of class $C^2(\Omega) \cap C^0(\overline{\Omega})$.

- N. BEUVIN, A. FARINA, B. SCIUNZI. *Monotonicity for solutions to semilinear problems in epigraphs.* arXiv :2502.04805v1, 7 Feb 2025.
- H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for elliptic equations in an unbounded Lipschitz domain. Comm. Pure Appl. Math. 50, 1089-1111 (1997).
- H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Further qualitative properties for elliptic equations in unbouded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15, 1997, 69-94.
- A. FARINA. Some results about semilinear elliptic problems on half-spaces. Mathematics in Engineering (2020), Volume 2, Issue 4 : 709-721
- B. GIDAS, W-M. NI, L. NIRENBERG. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 (1979).
- J. SERRIN, H. ZOU. Symmetry of ground states of quasilinear elliptic equations. Arch. Ration. Mech. Anal., 148, 265-290, (1999).