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Motivation

Traffic jam in Beijing

Traffic congestion is a main contributor of air pollution and excessive travel time
⇒ impacts urban mobility and environmental quality

Traffic management relies on control schemes to address perturbed traffic conditions

Most existing control techniques require complete and accurate knowledge of state

In practice, full information is rarely available due to limited and noisy measurements

Goal ⇒ develop reliable methods for estimating traffic from partial data
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Traffic Flow Modeling Scales

Benchmark scales of traffic models

microscopic ⇒ individual vehicle dynamics, full information given

macroscopic ⇒ continuum representation using aggregated variables

Microscopic model

Simulation of agent-based dynamics

Tracking position xi (t), velocity vi (t)
of vehicle i at time t

Each driver responds to surrounding
traffic by adjusting his speed

v̇i (t) = F (vi (t), xi (t)) (1)

Macroscopic model

Traffic modelled as a continuous flow

Density ρ(t, x), speed v(ρ), flux f (ρ)

Total number of cars is conserved

0 =
d

dt

∫ b

a

ρ(t, x)dx

=f (ρ(t, a))− f (ρ(t, b))

=−
∫ b

a

∂

∂x
f (ρ(t, x))dx

(2)

Connection ⇒ macroscopic variables emerge from microscopic interactions
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Model-Based Approaches

Follow-the-Leader (FtL), microscopic first order model
⇒ dynamics of each vehicle depend on vehicle immediately in front

ẋN
N (t) = vmax, t > 0,

ẋN
i (t) = v

(
L

N(xNi+1(t)−xNi (t))

)
, t > 0, i = 0, · · · ,N − 1

xN
i (0) = x̄N

i , i = 0, · · · ,N

(3)

⇒ accurate traffic representation, encodes individual movements
⇒ computationally demanding, requires more data

Lighthill-William-Richards (LWR), macroscopic traffic flow model
⇒ vehicles treated as a continuous medium similar to particles in fluid
⇒ one-dimensional (hyperbolic) conservation law{

∂
∂t
ρ(t, x) + ∂

∂x
f (ρ(t, x)) = 0, x ∈ R, t > 0,

ρ(x , 0) = ρ0(x), x ∈ R
(4)

⇒ faster implementation, less data-intensive
⇒ overlooks traffic heterogeneity, oversimplifies traffic phenomena
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Model-Based Approaches

Convergence analysis of FtL approximation scheme towards LWR model1

Link between FtL and LWR based on atomization of initial density ρ0

x̄N
i+1 := sup

{
x ∈ R :

∫ x

x̄Ni

ρ0(y)dy =
L

N

}
, i = 0, · · · ,N − 1 (5)

Solution of PDE (3) can be recovered as many particle limit2 of ODE system (4)

Macroscopic ini-
tial datum ρ0

Microscopic ini-
tial datum ρN0

Macroscopic solution ρ

Microscopic solution ρN

PDE (LWR)

ODE system (FtL)

Discretization

as N → +∞
Convergence

as N → +∞

Coupled Resolution of a Microscopic ODE System and a Macroscopic PDE

1Holden and Risebro 2017.
2Di Francesco and Rosini 2015.
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Data-Driven Approaches

Hybrid micro-macro models explored in traffic density reconstruction3
ẋN
N (t) = vmax, t > 0,

ẋN
i (t) = v

(
ρ(t, xN

i (t))
)
, t > 0, , i = 0, · · · ,N − 1

∂
∂t
ρ(t, x) + ∂

∂x
f (ρ(t, x)) = γ2 ∂2

∂x2
ρ(t, x), x ∈ R, t > 0,

(6)

Partial state reconstruction4 using measurements from probe vehicles (PVs)
⇒ low penetration rate Nprobes ≪ Ntotal

⇒ recover density ρ from limited trajectories

Requires access to real-time positions, densities and instantaneous speeds of PVs

Prior approaches rely on knowledge of initial density ρ0
⇒ No access to this critical information, need to leverage available data

3Barreau, Aguiar, Liu, and Johansson 2021.
4Liu, Barreau, Cicic, and Johansson 2020.
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Parametrized Microscopic Model

Limited data scenario ⇒ only initial and final
{(

x̄N , ȳN
)}n

i=0
positions of PVs

Enhanced version of FtL scheme (3) adding a parameter
⇒ αN accounts for unobserved vehicles between consecutive PVs
⇒ adjusts dynamics and allows varying levels of response
⇒ bridges discrete (vehicle-level) dynamics to continuous (density-level) dynamics

Parametrized ODE system with finite time horizon
ẋN
n (t) = vmax, t ∈ (0,T ]

ẋN
i (t) = v

(
ρNi (t)

)
, t ∈ (0,T ] i = 0, · · · , n − 1

xN
i (0) = x̄N

i , i = 0, · · · , n
(7)

⇒ local discrete densities

ρNi (t) :=
αN
i L

N
(
xN
i+1(t)− xN

i (t)
) , t ∈ (0,T ], i = 0, · · · , n − 1 (8)

Piecewise constant Eulerian discrete density

ρN(t, x) :=
N−1∑
i=0

ρNi (t)χ[xNi (t),xNi+1(t))
(x), x ∈ R, t ∈ [0,T ] (9)
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Well Posedness

Assumptions on velocity

v ∈ C 1([0,+∞)) (10a)

v is decreasing on [0,+∞) (10b)

v(0) = vmax <∞ (10c)

Local existence and uniqueness of solution to (7) (for fixed α) via Picard-Lindelöf

Condition on initial car positions x̄N
0 < x̄N

1 < · · · < x̄N
n−1 < x̄N

n

⇒ global existence

Lemma (Discrete maximum principle)

For solution x(t) of (7) with v satisfying (10a)-(10c), for all i = 0, · · · , n − 1,

αN
i L

NM
≤ xN

i+1(t)− xN
i (t) ≤ x̄N

n − x̄N
0 + (vmax − v(M)) t, ∀t ∈ [0,T ], (11)

where M := maxi

(
αN
i L

N(x̄Ni+1−x̄Ni )

)
ρN discrete approximation5 of solution to LWR model (4)

5Di Francesco, Fagioli, Rosini, and Russo 2016.
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ODE-Contrained Optimization

Physical conditions on α := αN induce feasible set

AN :=

{
α ∈ Rn : αi ∈

[
1, z̄Ni

]
, i = 0, . . . , n − 1,

n−1∑
i=0

αi = N

}
(12)

with z̄Ni := min

{
N(x̄Ni+1−x̄Ni )

L
,
N(ȳNi+1−ȳNi )

L

}
, i = 0, . . . , n − 1

Approximate density reconstruction6 ⇒ find optimal interaction parameter α

minimize
α

1

2
∥x(T )− ȳ∥2

s.t. ẋ(t) = V (Wαx(t) + bα(t))

x(0) = x̄

α ∈ AN

(13)

Existence of solutions guaranteed by assumptions on V := v ◦ 1
· (continuity of v)

and constraints on α (compactness of AN)

No uniqueness (a priori) since nonlinear dynamics can lead to multiple minima

6Baloul, Hayat, Liard, and Lissy 2025.
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and constraints on α (compactness of AN)

No uniqueness (a priori) since nonlinear dynamics can lead to multiple minima

6Baloul, Hayat, Liard, and Lissy 2025.
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L

}
, i = 0, . . . , n − 1

Approximate density reconstruction6 ⇒ find optimal interaction parameter α

minimize
α

1

2
∥x(T )− ȳ∥2
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Learning Method

Dataset consists of artificial data based on simulated (classical) FtL dynamics (3)

Sampling of PVs yielding a balanced representation of overall traffic

Neural network architecture designed to understand dynamics of traffic

Residual network (ResNet) where each block corresponds to a single time step

Input x̄ and state x(.) is propagated by mirroring Euler discretization

x(t +∆t) = x(t) + V (Wx(t) + b)∆t (14)

Weights and biases W , b are functions of α
Wi,i := − N

αiL
, i = 0, . . . , n − 1,

Wi,i+1 := N
αiL

, i = 1, . . . , n − 2,

Wi,j := 0, otherwise,

(15)

bi (t) =:= δi,n
N

αn−1L

(
vmaxt + x̄N

n

)
, t ∈ [0,T ] (16)

Nonlinear dynamic map V acts as physics grounded activation function

Backpropagation to minimize predictions errors 1
n

∑n
j=0|x

α
j (T )− ȳN

j |2
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Neural Network for Constrained Optimization

Neural Network Parameter α

Fixed Discretization Step ∆t

Dynamics fα(xk , i∆t)

Next State xk+1 = xk + fα(xt , i∆t)∆t

Repeat for all k = i∆t

Final State x(T ) Loss L(x(T ), ȳ)

Optimization α← α− η∇αL

Residual Block i

Prediction

Auto-differentiation

Parameter update

Forward process
Backward propagation

Learning Architecture
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Model validation

Through optimal parameter ᾱ, training yields piecewise constant discrete density

ρN(t, x) =
n−1∑
i=0

ᾱiL

N(xN
i+1(t)− xN

i (t))
χ[xNi (t),xNi+1(t))

(x), x ∈ R, t ∈ [0,T ], (17)

Simulation on test data by solving ODE system{
ẋN
i (t) = v

(
ρN(t, xi (t)+)

)
, t ∈ (0,T ],

xN
i (0) = x̄N

i i = 0, . . . , ntest
(18)

Assess model’s performance by measuring test error 1
ntest

∑ntest
j=0 |xj(T )− ȳN

i |2
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Numerical experiments

Parameters
Maximum traffic speed vmax = 120 km/h
Maximum traffic density ρmax = 200 cars/km

Greenshields velocity v(ρ) = vmax max
{
1− ρ

ρmax
, 0

}
, ρ ∈ [0, ρmax ]

Final time horizon T = 0.1 h

Sampling such 10% of total fleet serve as PVs for training and 2.5% for testing

Three traffic scenarii modelled

1 Shock wave represents an abrupt transition in traffic conditions
2 Rarefaction wave represents a smooth transition in traffic condition
3 Stop-and-go wave characterized by alternating regions of congestion and free flow
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Shock wave scenario

(a) N = 1000

Comparison of predicted and target final PV positions
Top Results from training procedure

Bottom Results on test sounds
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Shock wave scenario

(a) N = 1000 (b) N = 2000

Comparison of predicted and target final PV positions
Top Results from training procedure

Bottom Results on test sounds
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Shock wave scenario

(a) N = 1000 (b) N = 2000 (c) N = 3000

Comparison of predicted and target final PV positions
Top Results from training procedure

Bottom Results on test sounds
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Shock wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Initial densities

Bottom Final densities
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Shock wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization

Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Rarefaction wave scenario

(a) N = 1000

Comparison of predicted and target final PV positions
Top Results from training procedure

Bottom Results on test sounds
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Rarefaction wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Initial densities

Bottom Final densities
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Rarefaction wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization

Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Stop-and-go wave scenario

(a) N = 1000

Comparison of predicted and target final PV positions
Top Results from training procedure

Bottom Results on test sounds
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Stop-and-go wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Initial densities

Bottom Final densities
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Stop-and-go wave scenario

(a) N = 1000 (b) N = 2000
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Stop-and-go wave scenario

(a) N = 1000 (b) N = 2000 (c) N = 3000
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Stop-and-go wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization

Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Conclusion

Traffic State Reconstruction Approaches

Model-Based Method
⇒ uses microscopic and macroscopic models
⇒ provides theoretical guarantees
⇒ struggles to capture real-world complexities

Data-Driven Method
⇒ learns patterns directly from measurement data
⇒ derives system properties or predicts near-future states
⇒ requires extensive data for effectiveness

Our Approach
⇒ combines models and data to address sparsity and improve realism
⇒ Integrates physical priors with data observations
⇒ achieves reliable traffic reconstruction with limited observations
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Perspectives

Conservation law with unilateral constraint7 (toll gate){
LWR PDE (4) with

f (ρ(t, 0)) ≤ q(t), t > 0.
(19)

Conservation law with moving bottleneck8 (slow vehicle)
LWR PDE (4) with

f (ρ(t, y(t)))− ẏ(t)ρ(t, y(t)) ≤ αρmax
4vmax

(vmax − ẏ(t))2 , t > 0,

ẏ(t) = ω (ρ(t, y(t)+)) , t > 0,

y(0) = y0

(20)

Network with a junction9 J and N incoming roads and M outgoing ones{
∂tρl(t, x) + ∂x (f (ρl(t, x))) = 0, t > 0, x ∈ Il , l = 1, . . . ,N +M

ρl(0, x) = ρ0,l(x), x ∈ Il = [al , bl ], l = 1, . . . ,N +M
(21)

⇒
∑N

i=1 f (ρi (t, (bi )−)) =
∑N+M

j=N+1 f (ρj(t, (aj)+)) (Rankine Hugoniot)

⇒
∑N

i=1 f (ρi (t, (bi )−)) is maximized with f (ρj(·, (aj)+)) =
∑N

i=1 aj,i f (ρi (·, (bi )−))
7Colombo and Goatin 2007.
8Liard and Piccoli 2021.
9Coclite, Piccoli, and Garavello 2005.

N.B, A.H, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction June, 3rd 2025 25 / 29



References I

Baloul, N., A. Hayat, T. Liard, and P. Lissy (2025). “Traffic Flow Reconstruction
from Limited Collected Data”. In: hal preprint hal-05042012v1.

Barreau, M., M. Aguiar, J. Liu, and K. H. Johansson (2021). “Physics-Informed
Learning for Identification and State Reconstruction of Traffic Density”. In: arXiv
preprint arXiv:2103.13852.

Coclite, G. M., B. Piccoli, and G. Garavello (2005). “Traffic Flow on a Road
Network”. In: SIAM Journal on Mathematical Analysis 36.6, pp. 1862–1886.

Colombo, R. M. and P. Goatin (2007). “A Well-Posed Conservation Law with a
Variable Unilateral Constraint”. In: Journal of Differential Equations 234.2,
pp. 654–675.

Di Francesco, M., S. Fagioli, M. D. Rosini, and G. Russo (2016). “Follow-the-Leader
Approximations of Macroscopic Models for Vehicular and Pedestrian Flows”. In: arXiv
preprint arXiv:1610.06743.

Di Francesco, M. and M. D. Rosini (2015). “Rigorous Derivation of Nonlinear Scalar
Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit”. In:
arXiv preprint arXiv:1404.7062.

Holden, H. and N. H. Risebro (2017). “The Continuum Limit of Follow-the-Leader
Models: A Short Proof”. In: arXiv preprint arXiv:1709.07661.

N.B, A.H, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction June, 3rd 2025 26 / 29



References II

Liard, T. and B. Piccoli (2021). “On entropic solutions to conservation laws coupled
with moving bottlenecks”. In: Communications in Mathematical Sciences 19.4,
pp. 1041–1068.

Liu, J., M. Barreau, M. Cicic, and K. H. Johansson (2020). “Learning-Based Traffic
State Reconstruction Using Probe Vehicles”. In: arXiv preprint arXiv:2011.05031.

N.B, A.H, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction June, 3rd 2025 27 / 29



Scheme of Model
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Traffic Flow Reconstruction Pipeline

N.B, A.H, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction June, 3rd 2025 28 / 29



Convergence of Model

Weak solution of (4) is entropy admissible if it satisfies Kruzhkov entropy condition∫ T

0

∫
R
|u − k|∂ϕ

∂t
+ sign(u − k)(f (u)− f (k))

∂ϕ

∂x
dxdt ≥ 0, ∀k ∈ R (22)

Convergence of approximate density to solution of LWR

Under some assumptions, piecewise-constant density

ρN(t, x) =
n−1∑
i=0

ᾱN
i L

N(xN
i+1(t)− xN

i (t))
χ[xNi (t),xNi+1(t))

(x), x ∈ R, t ∈ [0,T ], (23)

where ᾱN
i ∈ AN is a solution to (13) converges to unique entropy solution ρ of

∂ρ

∂t
(t, x) +

∂f (ρ)

∂x
(t, x) = 0, x ∈ R, t ∈ [0,T ],

ρ(0, x) = ρ0(x), x ∈ R.
(24)

Typically, we impose a condition of type

max
i=0,...,n−1

αN
i = o(N). (25)

⇒ ensures controlled growth of αN
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