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Natural gradient descent [1] can be seen as a preconditioned update where parameter changes are
properly decorrelated from a functional perspective [8] (whitening transform). In other words, in a
spirit similar to a second order (or Newton’s) method, the Natural Gradient update uses the Gram
matrix instead of the Hessian, defined as the metric of the approximation manifold (for example the
manifold of neural networks) at the current iteration [3].
Although the assemblage and inversion of the Gram matrix is prohibitively expensive in the context
of big machine learning models, it becomes not only feasible but necessary when we look at scientific
machine learning problems [7]. For example when searching for the solution of a parametric partial dif-
ferential equation (pPDE) by solving the forward (given parameters) or inverse (given measurements)
problems using Physics Informed Neural Networks (PINNs) traditional ubiquitous solvers like Adam
or L-BFGS do not yield reliable solutions or they take too long to converge [4]. However, taking the
natural gradient perspective allows us to reinterpret gradient descent as a projection of the functional
gradient into the tangent space of the approximation manifold [2] obtaining great improvements.
That being said, both gradient and natural gradient descent will still get stuck at any local minima.
Furthermore, when the loss function is other than the euclidean distance (for example when minimising
the residual of a pPDE as in PINNs) even the natural gradient might yield non-optimal directions at
each step. The talk will focus on how we can tackle these situations by introducing a Natural version
of classical inertial dynamic methods like Nestorov [5] or heavy-ball [6].

[1] S.-i. Amari. Natural Gradient Works Efficiently in Learning. 10(2), 251–276. doi :
10.1162/089976698300017746.

[2] R. Gruhlke, A. Nouy, P. Trunschke. Optimal sampling for stochastic and natural gradient descent.
[3] J. Martens. New insights and perspectives on the natural gradient method.
[4] J. Müller, M. Zeinhofer. Achieving High Accuracy with PINNs via Energy Natural Gradients.

doi :10.48550/arXiv.2302.13163.
[5] Y. Nesterov. A method for solving the convex programming problem with convergence rate

O(1/k^2). 269, 543–547.
[6] B. Polyak. Some methods of speeding up the convergence of iteration methods. 4(5), 1–17. doi :

10.1016/0041-5553(64)90137-5.
[7] N. Schwencke, C. Furtlehner. ANaGRAM : A Natural Gradient Relative to Adapted Model for

efficient PINNs learning. doi :10.48550/arXiv.2412.10782.
[8] J. Sohl-Dickstein. The Natural Gradient by Analogy to Signal Whitening, and Recipes and Tricks

for its Use. doi :10.48550/arXiv.1205.1828.

Contact : agustin.somacal@ec-nantes.fr


