Strong propagation of chaos for systems of interacting particles with nearly stable jumps

Elisa Marini

CEREMADE - Université Paris Dauphine-PSL

Jointly with Eva Löcherbach and Dasha Loukianova

12ième Biennale Française des Mathématiques Appliquées et Industrielles
Carcans Maubuisson - June 5, 2025

α -stable r.v.s and their domains of attraction

• A r.v. X is strictly stable of index $\alpha \in (0,2]$ if, for all $n \ge 1$,

$$\frac{1}{\sigma n^{1/\alpha}} \sum_{i=1}^{n} X_i \stackrel{d}{=} X$$

where $(X_i)_{i=1}^n$ are i.i.d. copies of X, $\sigma > 0$.

α -stable r.v.s and their domains of attraction

• A r.v. X is strictly stable of index $\alpha \in (0,2]$ if, for all $n \ge 1$,

$$\frac{1}{\sigma n^{1/\alpha}} \sum_{i=1}^n X_i \stackrel{d}{=} X$$

where $(X_i)_{i=1}^n$ are i.i.d. copies of X, $\sigma > 0$.

• A r.v. U belongs to the normal domain of attraction of a stable r.v. X of index α if, taking $(U_i)_{i>1}$ i.i.d. $\sim U$ and for suitably chosen constants $(a_n)_{n>1}$,

$$\frac{\sum_{i=1}^{n} U_i - a_n}{n^{1/\alpha}} \stackrel{n \to +\infty}{\to} X \qquad \text{in law (stable CLT)}.$$

lpha-stable r.v.s and their domains of attraction

• A r.v. X is strictly stable of index $\alpha \in (0,2]$ if, for all $n \ge 1$,

$$\frac{1}{\sigma n^{1/\alpha}} \sum_{i=1}^n X_i \stackrel{d}{=} X$$

where $(X_i)_{i=1}^n$ are i.i.d. copies of X, $\sigma > 0$.

• A r.v. U belongs to the normal domain of attraction of a stable r.v. X of index α if, taking $(U_i)_{i>1}$ i.i.d. $\sim U$ and for suitably chosen constants $(a_n)_{n>1}$,

$$\frac{\sum_{i=1}^{n} U_i - a_n}{n^{1/\alpha}} \stackrel{n \to +\infty}{\to} X \qquad \text{in law (stable CLT)}.$$

Moments up to $q \leq \alpha!$

α -stable r.v.s and their domains of attraction

• A r.v. X is strictly stable of index $\alpha \in (0,2]$ if, for all $n \ge 1$,

$$\frac{1}{\sigma n^{1/\alpha}} \sum_{i=1}^n X_i \stackrel{d}{=} X$$

where $(X_i)_{i=1}^n$ are i.i.d. copies of X, $\sigma > 0$.

• A r.v. U belongs to the normal domain of attraction of a stable r.v. X of index α if, taking $(U_i)_{i\geq 1}$ i.i.d. $\sim U$ and for suitably chosen constants $(a_n)_{n\geq 1}$,

$$\frac{\sum_{i=1}^{n} U_i - a_n}{n^{1/\alpha}} \stackrel{n \to +\infty}{\to} X \qquad \text{in law (stable CLT)}.$$

Moments up to $q \leq \alpha!$

We will take:

- $\alpha \in (0,2) \setminus \{1\};$
- ν nearly stable of index α , centered if $\alpha > 1$.

N particles with positions $X^{N,i} \in \mathbb{R}$.

N particles with positions $X^{N,i} \in \mathbb{R}$.

$$X_{t}^{N,i} = X_{0}^{i} + \int_{0}^{t} \mathbf{b}(X_{s}^{N,i}, \boldsymbol{\mu_{s}^{N}}) ds + \int_{[0,t] \times \mathbb{R}_{+}} \boldsymbol{\psi}(X_{s-}^{N,i}, \boldsymbol{\mu_{s-}^{N}}) \mathbb{1}_{\{z \leq f(X_{s-}^{N,i})\}} \bar{\pi}^{i}(ds, dz)$$

$$+ \sum_{i \neq i} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} \frac{\mathbf{u}}{\mathbf{N}^{1/\alpha}} \mathbb{1}_{\{z \leq f(X_{s-}^{N,i})\}} \pi^{j}(ds, dz, du) \qquad i = 1, \dots, N$$

$$(1)$$

N particles with positions $X^{N,i} \in \mathbb{R}$.

$$X_{t}^{N,i} = X_{0}^{i} + \int_{0}^{t} \boldsymbol{b}(X_{s}^{N,i}, \boldsymbol{\mu_{s}^{N}}) ds + \int_{[0,t]\times\mathbb{R}_{+}} \boldsymbol{\psi}(X_{s-}^{N,i}, \boldsymbol{\mu_{s-}^{N}}) \mathbb{1}_{\{z \leq f(X_{s-}^{N,i})\}} \bar{\pi}^{i}(ds, dz)$$

$$+ \sum_{i \neq i} \int_{[0,t]\times\mathbb{R}_{+}\times\mathbb{R}} \frac{\boldsymbol{u}}{N^{1/\alpha}} \mathbb{1}_{\{z \leq f(X_{s-}^{N,j})\}} \bar{\pi}^{j}(ds, dz, du) \qquad i = 1, \dots, N$$

$$(1)$$

•
$$\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^{N,i}}$$
 empirical measure of the system at time t ;

N particles with positions $X^{N,i} \in \mathbb{R}$.

$$X_{t}^{N,i} = X_{0}^{i} + \int_{0}^{t} \mathbf{b}(X_{s}^{N,i}, \mu_{s}^{N}) ds + \int_{[0,t]\times\mathbb{R}_{+}} \psi(X_{s-}^{N,i}, \mu_{s-}^{N}) \mathbb{1}_{\{z \leq f(X_{s-}^{N,i})\}} \bar{\pi}^{i}(ds, dz)$$

$$+ \sum_{j \neq i} \int_{[0,t]\times\mathbb{R}_{+}\times\mathbb{R}} \frac{\mathbf{u}}{N^{1/\alpha}} \mathbb{1}_{\{z \leq f(X_{s-}^{N,j})\}} \bar{\pi}^{j}(ds, dz, du) \qquad i = 1, \dots, N$$

$$(1)$$

- $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{\chi_t^{N,i}}$ empirical measure of the system at time t;
- $(\pi^i)_{i=1}^N$ independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}$ with intensity $dsdz\nu(du)$ and $\bar{\pi}^i(ds,dz) = \int_{\mathbb{R}} \pi^i(ds,dz,du)$, independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with Leb intensity;

N particles with positions $X^{N,i} \in \mathbb{R}$.

$$X_{t}^{N,i} = X_{0}^{i} + \int_{0}^{t} \mathbf{b}(X_{s}^{N,i}, \mu_{s}^{N}) ds + \int_{[0,t]\times\mathbb{R}_{+}} \psi(X_{s-}^{N,i}, \mu_{s-}^{N}) \mathbb{1}_{\{z \leq f(X_{s-}^{N,i})\}} \bar{\pi}^{i}(ds, dz)$$

$$+ \sum_{j \neq i} \int_{[0,t]\times\mathbb{R}_{+}\times\mathbb{R}} \frac{\mathbf{u}}{N^{1/\alpha}} \mathbb{1}_{\{z \leq f(X_{s-}^{N,j})\}} \bar{\pi}^{j}(ds, dz, du) \qquad i = 1, \dots, N$$

$$(1)$$

- $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{\chi_t^{N,i}}$ empirical measure of the system at time t;
- $(\pi^i)_{i=1}^N$ independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}$ with intensity $dsdz\nu(du)$ and $\bar{\pi}^i(ds,dz) = \int_{\mathbb{R}} \pi^i(ds,dz,du)$, independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with Leb intensity;
- $\psi \equiv 0$ if $\alpha > 1$.

N particles with positions $X^{N,i} \in \mathbb{R}$.

$$X_{t}^{N,i} = X_{0}^{i} + \int_{0}^{t} \mathbf{b}(X_{s}^{N,i}, \mu_{s}^{N}) ds + \int_{[0,t]\times\mathbb{R}_{+}} \psi(X_{s-}^{N,i}, \mu_{s-}^{N}) \mathbb{1}_{\{z \leq f(X_{s-}^{N,i})\}} \bar{\pi}^{i}(ds, dz)$$

$$+ \sum_{j \neq i} \int_{[0,t]\times\mathbb{R}_{+}\times\mathbb{R}} \frac{\mathbf{u}}{N^{1/\alpha}} \mathbb{1}_{\{z \leq f(X_{s-}^{N,j})\}} \bar{\pi}^{j}(ds, dz, du) \qquad i = 1, \dots, N$$

$$(1)$$

where

- $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{\chi_t^N,i}$ empirical measure of the system at time t;
- $(\pi^i)_{i=1}^N$ independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}$ with intensity $dsdz\nu(du)$ and $\bar{\pi}^i(ds,dz) = \int_{\mathbb{R}} \pi^i(ds,dz,du)$, independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with Leb intensity;
- $\psi \equiv 0$ if $\alpha > 1$.

Think about families of interacting neurons.

N particles with positions $X^{N,i} \in \mathbb{R}$.

$$X_{t}^{N,i} = X_{0}^{i} + \int_{0}^{t} \mathbf{b}(X_{s}^{N,i}, \boldsymbol{\mu_{s}^{N}}) ds + \int_{[0,t] \times \mathbb{R}_{+}} \boldsymbol{\psi}(X_{s-}^{N,i}, \boldsymbol{\mu_{s-}^{N}}) \mathbb{1}_{\{z \leq f(X_{s-}^{N,i})\}} \bar{\pi}^{i}(ds, dz)$$

$$+ \sum_{j \neq i} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} \frac{\mathbf{u}}{N^{1/\alpha}} \mathbb{1}_{\{z \leq f(X_{s-}^{N,j})\}} \bar{\pi}^{j}(ds, dz, du) \qquad i = 1, \dots, N$$

$$(1)$$

where

- $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{\chi_t^N,i}$ empirical measure of the system at time t;
- $(\pi^i)_{i=1}^N$ independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}$ with intensity $dsdz\nu(du)$ and $\bar{\pi}^i(ds,dz) = \int_{\mathbb{R}} \pi^i(ds,dz,du)$, independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with Leb intensity;
- $\psi \equiv 0$ if $\alpha > 1$.

Think about families of interacting neurons.

We can prove strong existence and uniqueness for the N-particle system.

$$\begin{split} \bar{X}_t^i &= \bar{X}_0^i + \int_0^t b(\bar{X}_s^i, \bar{\boldsymbol{\mu}}_s) ds + \int_{[0,t] \times \mathbb{R}_+} \psi(\bar{X}_{s^-}^i, \bar{\boldsymbol{\mu}}_{s^-}) \mathbb{1}_{\{z \leq f(\bar{X}_{s^-}^i)\}} \bar{\pi}^i(ds, dz) \\ &+ \int_{[0,t]} \bar{\boldsymbol{\mu}}_{s^-}^{1/\alpha}(\boldsymbol{f}) d\boldsymbol{S}_s^{\alpha}, & i \geq 1 \end{split}$$

$$\begin{split} \bar{X}_t^i &= \bar{X}_0^i + \int_0^t b(\bar{X}_s^i, \bar{\boldsymbol{\mu}}_s) ds + \int_{[0,t] \times \mathbb{R}_+} \psi(\bar{X}_{s^-}^i, \bar{\boldsymbol{\mu}}_{s^-}) \mathbb{1}_{\{z \leq f(\bar{X}_{s^-}^i)\}} \bar{\pi}^i(ds, dz) \\ &+ \int_{[0,t]} \bar{\boldsymbol{\mu}}_{s^-}^{1/\alpha}(\boldsymbol{f}) d\boldsymbol{S}_s^{\alpha}, & i \geq 1 \end{split}$$

•
$$\bar{\mu}_s := \mathcal{L}(\bar{X}_s^1 \mid S_u^\alpha, u \leq s)$$
 and $\mu(f) = \int f d\mu$;

$$\begin{split} \bar{X}_t^i &= \bar{X}_0^i + \int_0^t b(\bar{X}_s^i, \bar{\boldsymbol{\mu}}_s) ds + \int_{[0,t] \times \mathbb{R}_+} \psi(\bar{X}_{s^-}^i, \bar{\boldsymbol{\mu}}_{s^-}) \mathbb{1}_{\{z \leq f(\bar{X}_{s^-}^i)\}} \bar{\pi}^i(ds, dz) \\ &+ \int_{[0,t]} \bar{\boldsymbol{\mu}}_{s^-}^{1/\alpha}(\boldsymbol{f}) dS_s^{\alpha}, & i \geq 1 \end{split}$$

- $\bar{\mu}_s := \mathcal{L}(\bar{X}_s^1 | S_u^\alpha, u \le s)$ and $\mu(f) = \int f d\mu$;
- $(\bar{\pi}^i)_{i=1}^N$ are independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity *dsdz*;

$$\begin{split} \bar{X}_t^i &= \bar{X}_0^i + \int_0^t b(\bar{X}_s^i, \bar{\boldsymbol{\mu}}_s) ds + \int_{[0,t] \times \mathbb{R}_+} \psi(\bar{X}_{s^-}^i, \bar{\boldsymbol{\mu}}_{s^-}) \mathbb{1}_{\{z \leq f(\bar{X}_{s^-}^i)\}} \bar{\pi}^i(ds, dz) \\ &+ \int_{[0,t]} \bar{\boldsymbol{\mu}}_{s^-}^{1/\alpha}(\boldsymbol{f}) d\boldsymbol{S}_s^{\alpha}, & i \geq 1 \end{split}$$

- $\bar{\mu}_s := \mathcal{L}(\bar{X}_s^1 | S_u^\alpha, u \le s)$ and $\mu(f) = \int f d\mu$;
- $(\bar{\pi}^i)_{i=1}^N$ are independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity **dsdz**;
- $\psi \equiv 0$ if $\alpha > 1$;

$$\begin{split} \bar{X}_t^i &= \bar{X}_0^i + \int_0^t b(\bar{X}_s^i, \bar{\boldsymbol{\mu}}_s) ds + \int_{[0,t] \times \mathbb{R}_+} \psi(\bar{X}_{s-}^i, \bar{\boldsymbol{\mu}}_{s-}) \mathbb{1}_{\{z \leq f(\bar{X}_{s-}^i)\}} \bar{\pi}^i(ds, dz) \\ &+ \int_{[0,t]} \bar{\boldsymbol{\mu}}_{s-}^{1/\alpha}(\boldsymbol{f}) d\boldsymbol{S}_s^{\alpha}, & i \geq 1 \end{split}$$

- $\bar{\mu}_s := \mathcal{L}(\bar{X}_s^1 | S_u^\alpha, u \le s)$ and $\mu(f) = \int f d\mu$;
- $(\bar{\pi}^i)_{i=1}^N$ are independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity **dsdz**;
- $\psi \equiv 0$ if $\alpha > 1$;
- S^{α} driving strictly α -stable process independent of the $(\bar{\pi}^i)_i$ s.

$$\begin{split} \bar{X}_t^i &= \bar{X}_0^i + \int_0^t b(\bar{X}_s^i, \bar{\boldsymbol{\mu}}_s) ds + \int_{[0,t] \times \mathbb{R}_+} \psi(\bar{X}_{s^-}^i, \bar{\boldsymbol{\mu}}_{s^-}) \mathbb{1}_{\{z \leq f(\bar{X}_{s^-}^i)\}} \bar{\pi}^i(ds, dz) \\ &+ \int_{[0,t]} \bar{\boldsymbol{\mu}}_{s^-}^{1/\alpha}(\boldsymbol{f}) d\boldsymbol{S}_s^{\alpha}, & i \geq 1 \end{split}$$

where

- $\bar{\mu}_s := \mathcal{L}(\bar{X}_s^1 \mid S_u^\alpha, u \leq s)$ and $\mu(f) = \int f d\mu$;
- $(\bar{\pi}^i)_{i=1}^N$ are independent PRM's on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity **dsdz**;
- $\psi \equiv 0$ if $\alpha > 1$;
- S^{α} driving strictly α -stable process independent of the $(\bar{\pi}^i)_i$ s.

We can prove strong existence and uniqueness for the limit system.

Theorem (Löcherbach, Loukianova, M. - 2025)

Under appropriate assumptions, for any $N \geq 1$, we can construct a strictly α -stable process $S^{N,\alpha}$, on an extension of the original probability space, independent of the initial conditions $(X_0^i)_i$ and of the $(\bar{\pi}^i)_i$, such that the following holds. If $(\bar{X}^i)_i$ is the solution of the limit system driven by $S^{N,\alpha}$ and $(\bar{\pi}^i)_i$, and $T_K^N := \inf\{t \geq 0 : |\Delta S_t^{N,\alpha}| > K\}$, for any K > 0, $t \geq 0$ and $i = 1, \ldots, N$.

$$\begin{split} & \mathbb{E}[\mathbb{1}_{\{t < T_K^N\}} | X_t^{N,i} - \bar{X}_t^i | \wedge | X_t^{N,i} - \bar{X}_t^i |^{\alpha_-}] \le C_t r(N) \qquad \alpha < 1 \\ & \mathbb{E}[\mathbb{1}_{\{t < T_K^N\}} | X_t^{N,i} - \bar{X}_t^i |] \le \tilde{C}_t \tilde{r}(N) \qquad \qquad \alpha > 1 \end{split}$$

where C_t , \tilde{C}_t are constants and r, \tilde{r} explicit rates, $\alpha_- < \alpha$.

Convergence of the finite particle system to the limit one in a convenient distance.

Convergence of the finite particle system to the limit one in a convenient distance.

Strong convergence (strong propagation of chaos): coupling argument yields convergence rate.

Convergence of the finite particle system to the limit one in a convenient distance.

Strong convergence (strong propagation of chaos): coupling argument yields convergence rate.

 S^{α} is a source of **common noise** (**conditional** propagation of chaos): particles are not independent, but they are i.i.d., knowing S^{α} . $\Longrightarrow (\mu_t^N)_{N\geq 1} \stackrel{\mathbf{w}}{\to} \bar{\mu}_t$.

Convergence of the finite particle system to the limit one in a convenient distance.

Strong convergence (strong propagation of chaos): coupling argument yields convergence rate.

 S^{α} is a source of **common noise** (**conditional** propagation of chaos): particles are not independent, but they are i.i.d., knowing S^{α} . \Longrightarrow $(\mu_t^N)_{N\geq 1} \stackrel{\mathbf{w}}{\to} \bar{\mu}_t$.

Corollary (Löcherbach, Loukianova, M. - 2025)

Under the previous assumptions,

$$egin{aligned} &\lim_{N o +\infty} W_{d_{lpha_{-}}}(\mathcal{L}(X^{N,i}_t),\mathcal{L}(ar{X}^i_t)) = 0 & \quad lpha < 1 \ &\lim_{N o +\infty} W_1(\mathcal{L}(X^{N,i}_t),\mathcal{L}(ar{X}^i_t)) = 0 & \quad lpha > 1, \end{aligned}$$

so we have weak convergence of $\mathcal{L}(X_t^{N,i})$ to $\mathcal{L}(\bar{X}_t^i)$ together with convergence of the first moments^a.

$$^{\mathbf{a}}W_{d_{\alpha}_{-}}(\nu_{\mathbf{1}},\nu_{\mathbf{2}})\coloneqq\inf_{\pi\in\Pi(\nu_{\mathbf{1}},\nu_{\mathbf{2}})}\int_{\mathbb{R}^{\mathbf{2}}}d_{\alpha_{-}}(x,y)\pi(dx,dy),\ d_{\alpha_{-}}(x,y)\coloneqq|x-y|\wedge|x-y|^{\alpha_{-}}.$$

 S^{α} is a Lévy processes (\Longrightarrow independent, stationary increments) with strictly stable increments.

 S^{lpha} is a Lévy processes (\Longrightarrow independent, stationary increments) with strictly stable increments.

 S_1^{α} is strictly α -stable r.v.

 S^{α} is a Lévy processes (\Longrightarrow independent, stationary increments) with strictly stable increments.

$$S_1^{\alpha}$$
 is strictly α -stable r.v.

$$S^{\alpha}$$
 is self-similar:

$$S_t^{\alpha} \stackrel{d}{=} t^{1/\alpha} S_1^{\alpha}$$
.

 \mathcal{S}^{lpha} is a Lévy processes (\Longrightarrow independent, stationary increments) with strictly stable increments.

 S_1^{α} is strictly α -stable r.v.

 S^{α} is self-similar:

$$S_t^{\alpha} \stackrel{d}{=} t^{1/\alpha} S_1^{\alpha}$$
.

Understanding how S^{α} arises is the key to our convergence proof.

$$A_t^N := \sum_{i=1}^N \int_{[0,t]\times\mathbb{R}_+\times\mathbb{R}} \frac{u}{N^{1/\alpha}} \mathbb{1}_{\{z\leq f(X_{s-}^{N,j})\}} \pi^j(ds,dz,du).$$

$$A_t^N := \sum_{i=1}^N \int_{[0,t]\times\mathbb{R}_+\times\mathbb{R}} \frac{u}{N^{1/\alpha}} \mathbb{1}_{\{z \le f(X_s^{N,j})\}} \pi^j(ds,dz,du).$$

If $f(x) \equiv \lambda$ on [0, t], then

$$A_t^N = \left(\frac{1}{N}\right)^{1/\alpha} \sum_{k=1}^{P_{0,t}^N} U_k$$

$$\mathbf{p}^{N}$$
 \mathbf{p}_{i} \mathbf{p}^{N} \mathbf{p}^{N} \mathbf{p}^{N}

 $(U_k)_{k>1}$ i.i.d. $\sim \nu$

$$P_{0,t}^N \sim Pois(N\lambda t), P_{0,t}^N \perp \!\!\!\perp (U_k)_{k\geq 1}.$$

$$A_t^N \coloneqq \sum_{i=1}^N \int_{[0,t]\times\mathbb{R}_+\times\mathbb{R}} \frac{u}{N^{1/\alpha}} \mathbb{1}_{\{z \le f(X_s^{N,j})\}} \pi^j(ds,dz,du).$$

If $f(x) \equiv \lambda$ on [0, t], then

$$A_{t}^{N} = \left(\frac{P_{0,t}^{N}}{N}\right)^{1/\alpha} \left(\frac{1}{P_{0,t}^{N}}\right)^{1/\alpha} \sum_{k=1}^{P_{0,t}^{N}} U_{k}$$

$$P_{0,t}^N \sim Pois(N\lambda t), P_{0,t}^N \perp \!\!\!\perp (U_k)_{k>1}.$$

 $(U_k)_{k\geq 1}$ i.i.d. $\sim \nu$

$$A_t^N := \sum_{i=1}^N \int_{[0,t]\times\mathbb{R}_+\times\mathbb{R}} \frac{u}{N^{1/\alpha}} \mathbb{1}_{\{z\leq f(X_s^{N,j})\}} \pi^j(ds,dz,du).$$

If $f(x) \equiv \lambda$ on [0, t], then

$$A_{t}^{N} = \left(\frac{P_{0,t}^{N}}{N}\right)^{1/\alpha} \left(\frac{1}{P_{0,t}^{N}}\right)^{1/\alpha} \sum_{k=1}^{P_{0,t}^{N}} U_{k}$$

$$P_{0,t}^N \sim Pois(N\lambda t), \ P_{0,t}^N \perp \!\!\!\perp (U_k)_{k\geq 1}.$$

 $(U_k)_{k\geq 1}$ i.i.d. $\sim \nu$

Suppose stable CLT holds:

$$A_t^N \overset{N \to \infty}{\sim} \left(\frac{P_{0,t}^N}{N} \right)^{1/\alpha} S_1^{\alpha}$$
 S_1^{α} limit α -stable r.v.

$$A_t^N \coloneqq \sum_{i=1}^N \int_{[0,t]\times\mathbb{R}_+\times\mathbb{R}} \frac{u}{N^{1/\alpha}} \mathbb{1}_{\{z \le f(X_s^{N,j})\}} \pi^j(ds,dz,du).$$

If $f(x) \equiv \lambda$ on [0, t], then

$$A_t^N = \left(rac{P_{0,t}^N}{N}
ight)^{1/lpha} \left(rac{1}{P_{0,t}^N}
ight)^{1/lpha} \sum_{k=1}^{P_{0,t}^N} U_k$$

$$P_{0,t}^N \sim Pois(N\lambda t), \ P_{0,t}^N \perp \!\!\!\perp (U_k)_{k\geq 1}.$$

 $(U_k)_{k\geq 1}$ i.i.d. $\sim \nu$

Suppose stable CLT holds:

$$A_t^N \overset{N \to \infty}{\sim} \left(\frac{P_{0,t}^N}{N} \right)^{1/\alpha} S_1^{\alpha}$$
 S_1^{α} limit α -stable r.v.

LLN for $P_{0,t}^N$ yields

$$A_t^N \overset{N \to \infty}{\sim} \left(\frac{N \lambda t}{N} \right)^{1/\alpha} S_1^{\alpha} \stackrel{d}{=} \lambda^{1/\alpha} S_t^{\alpha} = \int_{[0,t]} \lambda^{1/\alpha} dS_s^{\alpha}$$

where S_t^{α} is the increment of a stable process during time t (self-similarity).

Non constant rate: time discretization

If **f** not constant: $[k\delta, (k+1)\delta[, \forall k \geq 0.$

¹See Chen, Nourdin, Xu 2021 and Chen, Nourdin, Xu, Yang, Zhang 2022 for quantitative stable CLT.

Non constant rate: time discretization

If **f** not constant: $[k\delta, (k+1)\delta[, \forall k \geq 0.$

On each interval $[k\delta, (k+1)\delta]$:

- We freeze jumps rates $f(X_{k\delta}^{N,i})$ (total main jump rate in k-th interval is $\sum_{i=1}^{N} f(X_{k\delta}^{N,i})$).
- We apply the approximations seen above 1 to obtain

$$\left(\frac{\mathsf{total\ jump\ rate}\ \times \delta}{\mathsf{N}}\right)^{1/\alpha} S_1^{\alpha,k} = \left(\frac{\sum_{j=1}^{\mathsf{N}} f(X_{k\delta}^{\mathsf{N},j})}{\mathsf{N}}\right)^{1/\alpha} \delta^{1/\alpha} S_1^{\alpha,k}.$$

¹See Chen, Nourdin, Xu 2021 and Chen, Nourdin, Xu, Yang, Zhang 2022 for quantitative stable CLT.

Non constant rate: time discretization

If f not constant: $[k\delta, (k+1)\delta[, \forall k \geq 0]$.

On each interval $[k\delta, (k+1)\delta]$:

- We freeze jumps rates $f(X_{k\delta}^{N,i})$ (total main jump rate in k-th interval is $\sum_{i=1}^{N} f(X_{k\delta}^{N,i})$).
- We apply the approximations seen above 1 to obtain

$$\left(\frac{\mathsf{total\ jump\ rate}\ \times \delta}{\mathsf{N}}\right)^{1/\alpha} S_1^{\alpha,k} = \left(\frac{\sum_{j=1}^{\mathsf{N}} f(X_{k\delta}^{\mathsf{N},j})}{\mathsf{N}}\right)^{1/\alpha} \delta^{1/\alpha} S_1^{\alpha,k}.$$

The contribution of all intervals should give

$$\sum_{k} \left(\frac{\sum_{i=1}^{N} f(X_{k\delta}^{N,i})}{N} \right)^{1/\alpha} \delta^{1/\alpha} S_{1}^{\alpha,k} \stackrel{d}{=} \sum_{k} (\mu_{k\delta}^{N}(f))^{1/\alpha} S_{\delta}^{\alpha,k} \stackrel{\delta \to 0}{\longrightarrow} \int_{0}^{t} (\bar{\mu}_{s-}(f))^{1/\alpha} dS_{s}^{\alpha}.$$

¹See Chen, Nourdin, Xu 2021 and Chen, Nourdin, Xu, Yang, Zhang 2022 for quantitative stable CLT.

Another key step

$$\begin{split} \bar{X}_t^i &= \bar{X}_0^i + \int_0^t b(\bar{X}_s^i, \bar{\boldsymbol{\mu}}_s^N) ds + \int_{[0,t] \times \mathbb{R}_+} \psi(\bar{X}_{s^-}^i, \bar{\boldsymbol{\mu}}_{s^-}^N) \mathbb{1}_{\{z \leq f(\bar{X}_{s^-}^i)\}} \bar{\pi}^i(ds, dz) \\ &+ \int_{[0,t]} (\bar{\boldsymbol{\mu}}_{s^-}^N(f))^{1/\alpha} dS_s^{N,\alpha} + \boldsymbol{R}_t^N \end{split}$$

where
$$\bar{\mu}_t^N \coloneqq \frac{1}{N} \sum_{i=1}^N \delta_{\bar{X}_t^i}$$
.

Another key step

$$\begin{split} \bar{X}_{t}^{i} &= \bar{X}_{0}^{i} + \int_{0}^{t} b(\bar{X}_{s}^{i}, \bar{\boldsymbol{\mu}}_{s}^{N}) ds + \int_{[0,t] \times \mathbb{R}_{+}} \psi(\bar{X}_{s-}^{i}, \bar{\boldsymbol{\mu}}_{s-}^{N}) \mathbb{1}_{\{z \leq f(\bar{X}_{s-}^{i})\}} \bar{\pi}^{i}(ds, dz) \\ &+ \int_{[0,t]} (\bar{\boldsymbol{\mu}}_{s-}^{N}(\boldsymbol{f}))^{1/\alpha} dS_{s}^{N,\alpha} + \boldsymbol{R}_{t}^{N} \end{split}$$

where $\bar{\mu}_t^N \coloneqq \frac{1}{N} \sum_{i=1}^N \delta_{\bar{X}_t^i}$.

Proposition (Löcherbach, Loukianova, M. - 2025)

Under appropriate assumptions, for all $N \ge 1$,

$$\mathbb{E}[\mathbb{1}_{\{t \leq T_K^N\}} | R_t^N |] \leq C_t \frac{K^{1-\alpha}}{1-\alpha} w(N) \qquad \alpha < 1$$

$$\mathbb{E}[\mathbb{1}_{\{t \leq T_K^N\}} | R_t^N |^{\alpha+1}] \leq \tilde{C}_t \frac{K^{\alpha_+ - \alpha}}{\alpha_+ - \alpha} \tilde{w}(N) \qquad \alpha > 1$$

where C_t , \tilde{C}_t are positive constants and $w(N, \delta)$, $\tilde{w}(N, \delta)$ explicit rates, and $\alpha_+ \in (\alpha, 2)$.

Another key step

$$\begin{split} \bar{X}_{t}^{i} &= \bar{X}_{0}^{i} + \int_{0}^{t} b(\bar{X}_{s}^{i}, \bar{\boldsymbol{\mu}}_{s}^{N}) ds + \int_{[0,t] \times \mathbb{R}_{+}} \psi(\bar{X}_{s-}^{i}, \bar{\boldsymbol{\mu}}_{s-}^{N}) \mathbb{1}_{\{z \leq f(\bar{X}_{s-}^{i})\}} \bar{\pi}^{i}(ds, dz) \\ &+ \int_{[0,t]} (\bar{\boldsymbol{\mu}}_{s-}^{N}(f))^{1/\alpha} dS_{s}^{N,\alpha} + \boldsymbol{R}_{t}^{N} \end{split}$$

where $\bar{\mu}_t^N \coloneqq \frac{1}{N} \sum_{i=1}^N \delta_{\bar{X}_t^i}$.

Proposition (Löcherbach, Loukianova, M. - 2025)

Under appropriate assumptions, for all $N \ge 1$,

$$\mathbb{E}[\mathbb{1}_{\{t \leq T_K^N\}} | R_t^N |] \leq C_t \frac{K^{1-\alpha}}{1-\alpha} w(N) \qquad \alpha < 1$$

$$\mathbb{E}[\mathbb{1}_{\{t \leq T_K^N\}} | R_t^N |^{\alpha+}] \leq \tilde{C}_t \frac{K^{\alpha_+ - \alpha}}{\alpha_+ - \alpha} \tilde{w}(N) \qquad \alpha > 1$$

where C_t , \tilde{C}_t are positive constants and $w(N, \delta)$, $\tilde{w}(N, \delta)$ explicit rates, and $\alpha_+ \in (\alpha, 2)$.

It is sufficient to control $W_{r(\alpha)}(\bar{\mu}_t^N, \bar{\mu}_t)$ with $r(\alpha)$ order depending on α (Fournier, Guillin 2015).

For errors related to collateral jump term and finite system:

$$\begin{cases} \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}| \cdot | \wedge | \cdot |^{\alpha_-}] & \text{for } \alpha < 1, \, \pmb{\alpha}_- < \pmb{\alpha} \\ \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}| \cdot |] & \text{for } \alpha > 1. \end{cases}$$

For errors related to collateral jump term and finite system:

$$\begin{cases} \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}| \cdot | \wedge | \cdot |^{\alpha_-}] & \text{for } \alpha < 1, \, \pmb{\alpha_-} < \pmb{\alpha} \\ \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}| \cdot |] & \text{for } \alpha > 1. \end{cases}$$

For the stochastic integrals and their convergence:

$$\begin{cases} \mathbb{E}[\mathbbm{1}_{\{t < \mathcal{T}_K^N\}}|\cdot|] & \text{ for } \alpha < 1 \\ \mathbb{E}[\mathbbm{1}_{\{t < \mathcal{T}_K^N\}}|\cdot|^{\alpha_+}] & \text{ for } \alpha > 1, \ \pmb{\alpha_+} > \pmb{\alpha}. \end{cases}$$

For errors related to collateral jump term and finite system:

$$\begin{cases} \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}|\cdot| \wedge |\cdot|^{\alpha_-}] & \text{for } \alpha < 1, \, \pmb{\alpha_-} < \pmb{\alpha} \\ \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}|\cdot|] & \text{for } \alpha > 1. \end{cases}$$

For the stochastic integrals and their convergence:

$$\begin{cases} \mathbb{E}[\mathbbm{1}_{\{t < \mathcal{T}_K^N\}}|\cdot|] & \text{ for } \alpha < 1 \\ \mathbb{E}[\mathbbm{1}_{\{t < \mathcal{T}_K^N\}}|\cdot|^{\alpha_+}] & \text{ for } \alpha > 1, \ \pmb{\alpha_+} > \pmb{\alpha}. \end{cases}$$

Why?

For errors related to collateral jump term and finite system:

$$\begin{cases} \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}|\cdot|\wedge|\cdot|^{\alpha_-}] & \text{for } \alpha < 1, \, \pmb{\alpha_-} < \pmb{\alpha} \\ \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}|\cdot|] & \text{for } \alpha > 1. \end{cases}$$

For the stochastic integrals and their convergence:

$$\begin{cases} \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}|\cdot|] & \text{ for } \alpha < 1 \\ \mathbb{E}[\mathbbm{1}_{\{t < T_K^N\}}|\cdot|^{\alpha_+}] & \text{ for } \alpha > 1, \, {\color{blue}\alpha_+} > {\color{blue}\alpha}. \end{cases}$$

Why?

Finite and limit systems have different natures.

Collateral jumps have finite q-th moments for all $q < \alpha$.

Collateral jumps have finite q-th moments for all $q < \alpha$.

The jumps of $S^{N,\alpha}$ are represented by a PRM with intensity $ds\nu^{\alpha}(dz)$,

$$\nu^{\alpha}(dz) = \frac{c_1}{z^{\alpha+1}} \mathbb{1}_{\{z>0\}} dz + \frac{c_2}{|z|^{\alpha+1}} \mathbb{1}_{\{z<0\}} dz.$$

Collateral jumps have finite q-th moments for all $q < \alpha$.

The jumps of $S^{N,\alpha}$ are represented by a PRM with intensity $ds\nu^{\alpha}(dz)$,

$$\nu^{\alpha}(dz) = \frac{c_1}{z^{\alpha+1}} \mathbb{1}_{\{z>0\}} dz + \frac{c_2}{|z|^{\alpha+1}} \mathbb{1}_{\{z<0\}} dz.$$

In particular, for all K > 0,

$$\int_{B_{\nu}^{c}}|z|^{q}\nu^{\alpha}(\mathrm{d}z)<+\infty\quad\Longleftrightarrow\quad q<\alpha\qquad\text{ and }\qquad\int_{B_{K}}|z|^{q}\nu^{\alpha}(\mathrm{d}z)<+\infty\quad\Longleftrightarrow\quad q>\alpha.$$

Collateral jumps have finite q-th moments for all $q < \alpha$.

The jumps of $S^{N,\alpha}$ are represented by a PRM with intensity $ds\nu^{\alpha}(dz)$,

$$\nu^{\alpha}(dz) = \frac{c_1}{z^{\alpha+1}} \mathbb{1}_{\{z>0\}} dz + \frac{c_2}{|z|^{\alpha+1}} \mathbb{1}_{\{z<0\}} dz.$$

In particular, for all K > 0,

$$\int_{\mathcal{B}_{K}^{c}}|z|^{q}\nu^{\alpha}(\mathrm{d}z)<+\infty\quad\Longleftrightarrow\;q<\alpha\qquad\text{ and }\qquad\int_{\mathcal{B}_{K}}|z|^{q}\nu^{\alpha}(\mathrm{d}z)<+\infty\quad\Longleftrightarrow\;q>\alpha.$$

We cut big jumps of $S^{N,\alpha}$ $(\mathbb{1}_{\{t < T_{k}^{N}\}})$ and we use

$$\int_{B\nu} z^q \nu^{\alpha}(dz) < +\infty \quad \text{with} \quad q > \alpha.$$

Collateral jumps have finite q-th moments for all $q < \alpha$.

The jumps of $S^{N,\alpha}$ are represented by a PRM with intensity $ds\nu^{\alpha}(dz)$,

$$\nu^{\alpha} \big(\mathit{dz} \big) = \frac{c_1}{z^{\alpha+1}} \mathbb{1}_{\{z > 0\}} \mathit{dz} + \frac{c_2}{|z|^{\alpha+1}} \mathbb{1}_{\{z < 0\}} \mathit{dz}.$$

In particular, for all K > 0,

$$\int_{\mathcal{B}_{K}^{c}}|z|^{q}\nu^{\alpha}(\mathrm{d}z)<+\infty\quad\Longleftrightarrow\;q<\alpha\qquad\text{ and }\qquad\int_{\mathcal{B}_{K}}|z|^{q}\nu^{\alpha}(\mathrm{d}z)<+\infty\quad\Longleftrightarrow\;q>\alpha.$$

We cut big jumps of $S^{N,\alpha}$ ($\mathbb{1}_{\{t < T_{\nu}^{N}\}}$) and we use

$$\int_{B_K} z^q \nu^{\alpha}(dz) < +\infty \qquad \text{with} \qquad q > \alpha.$$

Boundedness and Lipschitz properties of b, f, ψ allow to switch.

Work in progress and future directions

•
$$(\mu^N:=\frac{1}{N}\sum_{i=1}^N \delta_{(X_{\star}^{N,i})_{t>0}})_{N\geq 1}\stackrel{w}{\to} \bar{\mu}:=\mathcal{L}(\bar{X}^1|S^{\alpha})$$
 (on the path space).

• Long-time behavior of both the finite and the limit systems.

• Study of a **spatially structured** version of the model, where the interactions depend on the particle positions in \mathbb{R}^d .

Thank you!

References

- Löcherbach, Loukianova, E.M. Strong propagation of chaos for systems of interacting particles with nearly stable jumps. Electron. J. Probab., 2025.
- ② Chen, Nourdin, Xu. Stein's method for asymmetric α-stable distributions, with application to the stable CLT. J. Theor. Probab., 2021.
- **3** Chen, Nourdin, Xu, Yang, Zhang. *Non-integrable stable approximation by Stein's method.* J. Theor. Probab., 2022.
- Fournier, Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields, 2015.
- **5** Sato. Lévy Processes and Infinitely Divisible Distributions. 1999.