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Moments up to g<al
We will take:
* a€(0,2)\{1};

® vy nearly stable of index «, centered if a > 1.
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We can prove strong existence and uniqueness for the N-particle system.
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We can prove strong existence and uniqueness for the limit system.



Main result

Theorem (Locherbach, Loukianova, M. - 2025)

Under appropriate assumptions, for any N > 1, we can construct a strictly a.-stable
process SN, on an extension of the original probability space, independent of the initial
conditions (X§); and of the (7');, such that the following holds. If (X); is the solution of
the limit system driven by S"** and (7');, and T} = inf{t >0 : |AS"*| > K}, for any
K>0,t>0andi=1,...,N,

E[1 {,<Tm|xt"”" —X|AIXYT - X|*-1< Gr(N) a<1
E[l{t<rly}|XtN'i - Xi|] < G:F(N) a>1

where C, C; are constants and r, F explicit rates, a— < a.
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Corollary (Locherbach, Loukianova, M. - 2025)

Under the previous assumptions,
lim Wy, (LX), L(X)=0 a<1
N—+oco -

lim Wi(L(XM),L(X))=0 a>1,
N—+oc0

so we have weak convergence of L(X{""") to L(X{) together with convergence of the first
moments?.

Wiy (v1,v2) = infrcnqy va) Jp2 da_ (X, ¥)7(dx, dy), do_ (x,y) =[x —y| A [x —y|*~.
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5% is a Lévy processes ( —> independent, stationary increments) with strictly stable
increments.

St is strictly a-stable r.v.

5% is self-similar: J
1
s L ¢t/agy

Understanding how S arises is the key to our convergence proof.
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Heuristics: how we obtain the limit system

N
AV = Z/ d_q X/\Q,-)}ﬂj(ds,dz, du).

= Jio r wm NV (=11

If f(x) = X on [0, t], then

PN 1/e 1 1/e Pgl,t
e ( K’t> (P’V> > Ui (Ui iid. ~ v
0,t =1

Py ~ Pois(NAt), P{, 1L (Uk)ks1.

Suppose stable CLT holds:

PN 1/a
AN V2o < /(:I,t> St St limit a-stable r.v.

LLN for P!, yields

1/a
Aiv N—yo0 (N/\t) 52 d )\1/045;1 :/ /\l/adssa
N 0.4

where S is the increment of a stable process during time t (self-similarity).
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The contribution of all intervals should give

N N,y \ /e .
> <—Z’=‘ e )) 8/mSph £ S5 28 [ () s

k k

1See Chen, Nourdin, Xu 2021 and Chen, Nourdin, Xu, Yang, Zhang 2022 for quantitative stable CLT.
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It is sufficient to control W, (i, fi¢) with r(a) order depending on « (Fournier, Guillin
2015).
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IE[]l{t<T/<v}| S]] fora>1, ar > a.

Why?

Finite and limit systems have different natures.
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Collateral jumps have finite g-th moments for all ¢ < a.

The jumps of S¥'* are represented by a PRM with intensity dsv®(dz),

v*(dz) = a+1 — 1>y dz+ ——5 iz |a+1 1{z<0ydz.
In particular, for all K > 0,
/ |z|7v%(dz) < +o0 <= g< and / |z|7v%(dz) < +o0 <= ¢ > a.
Bg Bk

We cut big jumps of SV (]l{t<,-/g}) and we use

/ z9%(dz) < +00  with q>a.
Bk

Boundedness and Lipschitz properties of b, f, v allow to switch.



Work in progress and future directions
o (W =13N, Foxiy . o IN=1 % = L(X*|5%) (on the path space).
® Long-time behavior of both the finite and the limit systems.

® Study of a spatially structured version of the model, where the interactions depend
on the particle positions in R¢.



Thank you!
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