
Neural Methods with Natural Gradient
Acceleration

Nicolas PAILLIEZ, IRMA - Strasbourg
Emmanuel FRANCK, INRIA - Strasbourg

Victor MICHEL-DANSAC, INRIA - Strasbourg
Laurent NAVORET, IRMA - Strasbourg
Stanislas PAMELA, UKEAEA - Culham

Neural Methods with Natural Gradient Acceleration 1 / 29



Table of Contents

1 Neural methods for solving stationary PDEs
Physics-Informed Neural Networks (PINNs)
Acceleration via Natural Gradient Descent
Examples
Deep Ritz Method

2 Neural methods for time-dependent PDEs
Discrete PINNs
Neural Galerkin method
Examples

Neural Methods with Natural Gradient Acceleration 2 / 29



Table of Contents

1 Neural methods for solving stationary PDEs
Physics-Informed Neural Networks (PINNs)
Acceleration via Natural Gradient Descent
Examples
Deep Ritz Method

2 Neural methods for time-dependent PDEs
Discrete PINNs
Neural Galerkin method
Examples

Neural Methods with Natural Gradient Acceleration 3 / 29



PINNs
PINNs : Physics-Informed Neural Networks

• A Physics-Informed Neural Network (PINN) solves differential equations
by embedding physical laws, approximating solutions as uθ(x , t).

• For the PINN uθ, these equations are approximated as follows:
L(uθ, x , t, µ) ≈ 0, for (x , t, µ) ∈ Ω× (0,T )× P,

uθ(x , t, µ) ≈ g(x , t, µ), for (x , t) ∈ ∂Ω× (0,T )× P,

uθ(x , 0, µ) ≈ u0(x , µ), for x ∈ Ω× P.

Neural Methods with Natural Gradient Acceleration 4 / 29



PINNs
PINNs : Physics-Informed Neural Networks

• The idea behind training PINNs is to construct a loss function based on
the residual of the PDE, given by:

JPDE(θ) =

∫
Ω

∫
P

∫ T

0
∥L(uθ, x, t, µ)∥2

2 dt dµ dx +

∫
∂Ω

∫
P

∫ T

0
∥uθ(x, t, µ) − g(x, t, µ)∥2

2 dt dµ dx

+
∫
Ω

∫
P ∥uθ(x, 0, µ) − u0(x, µ)∥2

2 dµ dx,

• We applying the Monte Carlo method :

JPDE(θ) =
1

Nµ

1

Nx

1

Nt

Nµ∑
i=1

Nx∑
j=1

Nt∑
k=1

∥L(ũθ, xj , tk ;µi )∥
2
2 +

1

Nµ

1

Nx

Nµ∑
i=1

Nx∑
j=1

∥ũθ(xj , 0;µi ) − u0(xj ;µi )∥
2
2

• Optimization then consists of solving:

θopt = argmin
θ

JPDE(θ)

Neural Methods with Natural Gradient Acceleration 5 / 29



PINNs
PINNs: Advantages and Drawbacks

Advantages: PINNs associated with the Monte Carlo method have the
following advantages

• Does not require a mesh
• Independent of the dimension

Drawbacks: PINNs associated with the Monte Carlo method have the
following disadvantages

• Lower accuracy compared to classical methods
• Violates temporal causality

Neural Methods with Natural Gradient Acceleration 6 / 29



Natural Gradient

Goal: Minimize a cost function L(θ) = E(uθ), where uθ ∈ F , a Hilbert
space of functions.

Limitation of standard gradient:
The Euclidean gradient ∇L(θ) does not reflect the geometry of the
function space.
Small changes in parameters θ may induce large, uncontrolled changes
in uθ.

Need: A gradient direction that is optimal in function space, not just in
parameter space.

Reference: S. Amari (1998), Natural Gradient Works Efficiently in Learning

Neural Methods with Natural Gradient Acceleration 7 / 29



Natural Gradient

Key idea: Equip the parameter space with a metric induced by the
function space F :

Gij(θ) = ⟨∂θiuθ, ∂θjuθ⟩F

Natural Gradient:
∇natL(θ) := G (θ)+∇L(θ)

where G+ denotes pseudo-inverse.

Geometric interpretation: The natural gradient follows the steepest
descent direction **in F**, i.e., the most effective way to change uθ.

References:
J. Müller and M. Zeinhofer (2023), Achieving High Accuracy with PINNs via Energy Natural
Gradients.

N. Schwencke and C. Furtlehner (2025), ANAGRAM: A Natural Gradient Relative to Adapted

Model for Efficient PINNs Learning, ICLR 2025.

Neural Methods with Natural Gradient Acceleration 8 / 29



Elliptic and Linear PDE System

We consider the following elliptic and linear PDE system:

{
L(u(x)) = −∇ · (A(x)∇u(x)) +∇ · (β(x)u(x)) + c(x)u(x) = f (x), ∀x ∈ Ω ⊂ Rd ,

u(x) = 0, ∀x ∈ ∂Ω.

Here:
A(x) is a matrix of regular functions,
β(x) is a vector of regular functions,
c(x) and f (x) are regular functions.

Neural Methods with Natural Gradient Acceleration 9 / 29



Example 1 : Poisson’s Equation

We are interested in the following PDE (Poisson’s equation):

−∆u = f

where f is defined as:

f (x , µ) = µ · 8π2 sin(2πx1) sin(2πx2)

The exact solution is given by:

uexact(x , µ) = µ · sin(2πx1) sin(2πx2)

Neural Methods with Natural Gradient Acceleration 10 / 29



Example 1
Poisson’s equation, layers [40] = 201 ndof

Figure: Result of a PINNs with Scimba

Neural Methods with Natural Gradient Acceleration 11 / 29



Example 1
Poisson’s equation, layers [40] = 201 ndof

Mean Standard Deviation Min Max
Classical 3.35 × 10−2 1.85 × 10−2 1.16 × 10−2 6.38 × 10−2

ENG 9.67 × 10−5 1.38 × 10−4 1.32 × 10−5 4.89 × 10−4

ANA 8.69 × 10−4 1.07 × 10−3 2.55 × 10−4 3.95 × 10−3

Table: Statistical summary of relative L2 errors

Neural Methods with Natural Gradient Acceleration 12 / 29



Example 2 : Anistropic problem

We are interested in the following PDE:

−∇ · (A∇u) = f

where:

A(x) =

(
εx2

1 + x2
2 (ε− 1)x1x2

(ε− 1)x1x2 x2
1 + εx2

2

)
,

f (x1, x2) = a exp
(
− (x1−c1)2+(x2−c2)2

2σ2

)
,

a = 10, c1 = 0.5, c2 = 0.5, σ = 0.01, ε = 0.005.

Neural Methods with Natural Gradient Acceleration 13 / 29



Example 2
Anistropic equation, FEM solution

Figure: FEM solution with FEnics

Neural Methods with Natural Gradient Acceleration 14 / 29



Example 2
Anistropic equation, layers = [30]*3, nb_colloc = 8000

Figure: PINNs solution with Scimba

Neural Methods with Natural Gradient Acceleration 15 / 29



Example 2
Anistropic equation, layers = [30]*3, nb_colloc = 8000

Mean Std. Dev. Min Max
Classical 9.90 × 10−1 1.71 × 10−2 9.73 × 10−1 1.02 × 100

ENG 5.72 × 10−2 1.50 × 10−2 3.90 × 10−2 7.30 × 10−2

ANA 1.79 × 10−1 2.12 × 10−2 1.52 × 10−1 2.14 × 10−1

Table: Statistical summary of relative L2 errors (uniform sampling, with ADAM)

Neural Methods with Natural Gradient Acceleration 16 / 29



Deep Ritz Method

Consider the Poisson problem:{
−∆W = f in Ω,

W = 0 on ∂Ω.

The energy formulation is:

W = argminψ∈H1
0 (Ω)

(
1
2

∫
Ω
|∇ψ|2 dx −

∫
Ω
f ψ dx

)
.

Approximate W using a nonlinear function ϕ(x , θ):

Wθ(x) = ϕ(x , θ).

Optimize θ:

θ = argminϑ∈RNJ(ϑ), J(ϑ) =
1
2

∫
Ω
|∇ϕ(x , ϑ)|2 dx −

∫
Ω
f (x)ϕ(x , ϑ) dx .

Neural Methods with Natural Gradient Acceleration 17 / 29



Table of Contents

1 Neural methods for solving stationary PDEs
Physics-Informed Neural Networks (PINNs)
Acceleration via Natural Gradient Descent
Examples
Deep Ritz Method

2 Neural methods for time-dependent PDEs
Discrete PINNs
Neural Galerkin method
Examples

Neural Methods with Natural Gradient Acceleration 18 / 29



Temporal Causality and Time-Space PINNs

Time-Space Physics-Informed Neural Network (PINN) does not respect
temporal causality.

Temporal Causality: This principle requires that a neural network
must be sufficiently trained at time t before progressing to time t + 1.

Time-Space PINNs: These networks incorporate both spatial and
temporal dimensions but do not inherently respect the progression of
time in the training process.

Thus, Time-Space PINNs may fail to accurately model dynamic systems
with time-dependent states.

Neural Methods with Natural Gradient Acceleration 19 / 29



Neural Methods with Time Consideration
DPINNs: Discrete PINNS

Discrete PINN is based on a discrete-time formulation.
We consider the following PDE:

∂tu = L(u)

• We discretize in time (Euler scheme):

u(tk+1, x) = u(tk , x) + ∆tG (u(tk , x)) + O(t2)

• We assume that the model parameters evolve over time, meaning:

u(t, x) = nnθ(t)(x)

Neural Methods with Natural Gradient Acceleration 20 / 29



Neural Methods with Time Consideration
DPINNs: Discrete PINNS

This leads to the Discrete PINN associated with the Euler scheme:

θk+1 = min
θ

∫
Ω
∥nnθ(x)− nnθk (x)−∆tG (nnθk (x))∥

2
2

At each time step, we solve this using a Monte Carlo approach, similar to
the classical PINN method, followed by an optimization process combining
ADAM and L-BFGS algorithms.

Neural Methods with Natural Gradient Acceleration 21 / 29



Neural Methods with Time Consideration
Neural Galerkin

• We start from the discrete PINN formulation:

θk+1 = min
θ

∫
Ω
∥nnθ(x)− nnθk (x)−∆tG (nnθk (x))∥

2
2.

• Since nnθ(x) is intended to approximate the solution at time tk+1, we
assume that θk is not far from the optimal solution and propose to linearize
around θk . The linearization is as follows:

nnθ(x) = (∇θkuθk )(θ − θk) + nnθk (x) + O((θ − θk)
2).

• Substituting this into the original formulation gives:

θk+1 = min
θ

∫
Ω

∥(∇θkuθk )(θ − θk)−∆tG (nnθk (x))∥2
2.

Neural Methods with Natural Gradient Acceleration 22 / 29



Neural Methods with Time Consideration
Neural Galerkin

1 The above problem is a least-squares problem, which can be solved
numerically using an appropriate solver.

2 It can also be solved analytically using the normal equation in the L2

inner product:

M(θk)θk+1 = M(θk)θk −∆tR(θk),

where:

M(θk) =

∫
Ω
(∇θknnθk )⊗ (∇θknnθk )dx , (mass matrix)

R(θk) =

∫
Ω
(∇θknnθk )G (nnθk (x))dx .

Since matrix inversion can be problematic, it is preferable to solve:

(M(θk) + εId)θk+1 = M(θk)θk −∆tR(θk).

Neural Methods with Natural Gradient Acceleration 23 / 29



Exemple 3 : Heat equation

We are interested in solving the heat equation:

∂u

∂t
− D∆u = f

with:
Diffusion coefficient: D = 0.02
Source term: f = 0
Final time: T = 0.3, time step: ∆t = 0.001
Exact solution:

uexact(t, x1, x2) = e−Dπ2t · sin(πx1) · sin(πx2)

Neural Methods with Natural Gradient Acceleration 24 / 29



Example 3
Heat equation : DPINNs, T = 0.3, dt = 0.003, nb_colloc = 2000

Figure: Results of Discrete PINN

Neural Methods with Natural Gradient Acceleration 25 / 29



Example 3
Heat equation : DPINNs with Natural Gradient (ENG)

Figure: Results of Discrete PINN with Natural Gradient

Neural Methods with Natural Gradient Acceleration 26 / 29



Example 3
Heat equation : Neural Galerkin, T = 0.3, dt = 0.003, nb_colloc = 2000

Figure: Results of Neural Galerkin Method

Neural Methods with Natural Gradient Acceleration 27 / 29



Example 3
Heat equation : Neural Galerkin with Natural Gradient (ANAGRAM)

Figure: Results of Neural Galerkin Method

Neural Methods with Natural Gradient Acceleration 28 / 29



References

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics Informed Deep
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential
Equations,” Journal of Computational physics, 378:686–707, 2019.

S. Chen, B. Shan, and Y. Li, “Efficient Discrete Physics-Informed Neural
Networks for Addressing Evolutionary Partial Differential Equations,”
Preprint, December 22, 2023.

J. Bruna, B. Peherstorfer, and E. Vanden-Eijnden, “Neural Galerkin Schemes
with Active Learning for High-Dimensional Evolution Equations,” Preprint,
February 29, 2024.

Neural Methods with Natural Gradient Acceleration 29 / 29


