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The setting: Large scale optimization

Let:

min F(x), xRN
xERN

where F: RN - R U {+0o0}, convex or not, is assumed to have at least one
minimizer x*.

Includes the composite case: F = f + h where f is a convex differentiable
function and h is a convex lower semicontinuous (Isc) simple function.

Finding critical points of F / minimizers of F

@ First order optimization methods i.e. methods that can only use the values
of the function F and/or the values of its gradient (or subgradient).

@ Convergence rates in term of decrease of F(xx) — F(x*) ? Convergence
rates on |[xx — x*|| ?




Gradient Descent

Cauchy (1857) - Polyak (1964)

Assume that F is a convex differentiable function having a L — Lipschitz gradient
and at least one minimizer x*. The gradient descent (GD) is defined by

Xnt1 = Xn — SVF(x,) with s <

~=

© The sequence (F(x,))nen is non increasing.
@ If F is convex, then (x,),cn Weakly converges to a x* € arg min(F) and:

o= x|

Vn €N, Fla) = F(x") < 2=

The number of iterations to reach F(x,) — F(x*) < e isin O (1).

© The rate % can not be improved assuming only convexity.




Stronger assumptions, better rates

Quadractic growth condition, a relaxation of strong convexity

If Fis u-strongly convex i.e. that G(x) := F(x) — &||x||? is convex,
or
If F satisfies some quadratic growth condition around its minimizers:

F(y)
There exists @ > 0 such that:

Vx € RV, F(x) — F(x*) >

N =

d(x, X*)2.

(z*, F(z"))

Then the iterates generated by GD with s = % satisfy:

Fla) = FO)=0(@=-r)), r=".

The number of iterations to reach F(x,) — F(x*) < e is in O (log (1)).

Very slow if # <1, but not pessimistic: rate achieved for F(xi,x2) = §x§ + %xfj




Can we do better with first order methods ?

Theorem (Nemirovski Yudin 1983, Nesterov 2003)

Let k < ; and L > 0. There exists a convex function F having a

L- L/pschltz gradient over RN such that for any first order method

3L||x0 — X*H2

Foi) = F" 2 =1

— The ratein O (%) for GD is not optimal.

< Can we do better with first order methods if F is convex ? if F is
strongly convex 7

Yes, using inertial schemes.



The Heavy Ball method
A first inertial method (Polyak 1964)
The Heavy ball method

Yk = Xk+a(xk — Xxk—1)

, a€l0,1], s> 0.
Xe41 = Yk — SVF(xk) acl01 s

where a € [0,1] is an fixed inertial coefficient added to mitigate zigzagging.
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The Heavy Ball method

The dynamical system intuition
Let us consider:

X(t) + ax(t) + VF(x(t)) = 0.

@ Describe the motion of a body (a heavy ball) in a potential field F subject
to a friction proportional to its velocity.

@ Natural intuition: the body reaches a minimum of the potential F.

Link between the continuous ODE and the discrete scheme
The HB algorithm:

Y = Xk+a(xk — xk-1)

€ [0,1], s > 0.
Xk+1 — yk—SVF(Xk) » & [ ] s

can be seen as a discretization of the second order ODE:
X(t) + ax(t) + VF(x(t)) =0

with: s = h*> and a=1 — ah (a: inertia parameter - o friction parameter).




The Heavy Ball method

Convergence results for strongly convex functions

v = Xk+a(xk —xk-1)

Xe41 = Yk — SVF(xx)
with (Polyak’s choice):

2 2
S (VE-vE . 2
Vit i) Vit i)
Theorem (Global convergence - [Polyak 1964])

Let F : R" — R be a u-strongly convex function of class C?> and having a
L-Lipschitz continuous gradient. If s < % then:

SN AN :
F(x) — F* < (M) (F(x0) — F¥).

| S

_ y=3
~O<e 2 Lk), k—+o0




The Heavy Ball method

How to choose a to optimize the

convergence to a minimizer ?

- - Quadratic, Q

— 1-Quasi-Strongly-convex, qS
©- Siegel rate, qS

-=- qS+ gradient L=1.1 Lipschitz

t T t t t 1
3 4 5 6 7 8

alpha

@ For strongly convex functions of class C? having a L-Lipschitz gradient, the
optimal value of ais: o = 2,/u.

@ Changing the step and the inertia, [Ghadimi et al. 2015] prove the geometric cv
for C! strongly convex functions having a Lipschitz continuous gradient.

@ For strongly convex functions of class C! having a L-Lipschitz gradient

[Siegel 2019]: when o = 2,/p,

F(x(t)) = F* = O (eV™).



The Nesterov’s accelerated gradient method

Nesterov 1983

t — 1
Yk = Xkt . (XK — Xk—1)
tht1
Xkv1 = Yk —SVF(w)

. . 14+4/1+4t2
where the sequence (tx)ken is defined by: t; =1 and: tyy1 = %

A modified version (Chambolle Dossal 2015)

Yk Xk + (xk — xk—1), «@=>3

k
k+ «
Xkv1 = Y —SVF(w)

For the class of convex functions, the sequence of iterates satisfies:

(o +1)lxo — x*?

_F* <
Vk €N, F(x)— F* < o

and, for the modified version with a > 3, weakly converges to a minimizer of F.



Link between the ODE and the optimization scheme

Discretization of an ODE, Su Boyd and Candés (2015)

Xnt1 = Yn — hVF(y,) with y, = x, + nE (y(x,, — Xp—1)

can be seen as a semi-implicit discretization of a solution of
%(t) + %X(t) + VF(x(t)) =0 (ODE)

With x(tp) = 0. Move of a solid in a potential field with a vanishing viscosity <.

General methodology to analyze optimization algorithms
@ Interpreting the optimization algorithm as a discretization of a given ODE.
@ Analysis of ODEs using a Lyapunov approach:

E(t) = £2(F(x(1)) = F(x*)) + % (e = 1)(x(2) = x*) + ex(t)]1*

@ Building a sequence of discrete Lyapunov energies adapted to the
optimization scheme to get the same decay rates




Convergence analysis of the Nesterov gradient method
Convergence rate in the continuous setting

Let F: RNV — R be a differentiable convex function and x* € arg min(F) # (.

o Ifaa>3,
x 1 [Attouch, Chbani,
F(X(t)) - F(X ) =0 <t2> Peypouquet, Redont 2016]

@ If a > 3, then x(t) cv to a minimizer of F and:
[Su, Boyd, Candes 2016]

F(x(t)) — F(x*)=o (tlz) [Chambolle, Dossal 2015]
[May 2017]

@ If ov < 3 then no proof of cv of x(t) but:

[Attouch, Chbani, Riahi 2019]
) [Aujol, Dossal 2017]

F(x(8)) - F(x*) = 0 (1

t3




The Nesterov’s accelerated gradient method
For the class of convex functions

Let F: RY — R be a differentiable convex function with X* := arg min(F) # 0.

n

Yn = Xp+ (X,, - Xn—l) 1
n+a , a>0, h< n

Xn+1 = Yn— th(Yn)
o Ifa>3
1 [Nesterov 1984, Su, Boyd, Candes 2016,
) = R
F(X") o F(X ) =0 (nZ) Chambolle Dossal 2015, Attouch et al. 2018]

@ If o > 3, then (xp)n>1 cv and:

1 [Chambolle, Dossal 2015]
o 1 ,
F(X") F(X ) =9 (n2> [Attouch, Peypouquet 2015]
@ If <3

1 [Attouch, Chbani, Riahi 2018]
* _ ’ 1
Flxa) = F(x) =0 (n ’ [Apidopoulos, Aujol, Dossal 2018]
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GD vs Nesterov in the strongly convex case
Exponential rate vs Polynomial rate

Assume now that F is additionally p-strongly convex, or satisfies some quadratic
growth condition:

Vx RN, F(x)— F* > gd(X,X*)Q.
Convergence rate for GD
VneN, F(x,)— F*"=0((1-kx)").

The number of iterations required to reach an e-solution is: nf® ~ L log (25 Mp) .
€ K e

Convergence rate for Nesterov’s accelerated GD [Candes et al 2015], [Attouch
Cabot 2017], [ADR 2018].

If F has a unique minimizer,

Wl

Vo >0, Vne N, F(x,) — F* :o(n*

)




Nesterov accelerated algorithm for strongly convex functions

Nesterov accelerated algorithm for strongly convex functions

\/f

+1— h( )
n = Xn ———\Xp — Xp—
Y 1+ vk !

Xn+1 = Yn — %VF(yn)

Theorem (Theorem 2.2.3, Nesterov 2013)
_ b

Assume that F is ji-strongly convex for some p > 0. Let € > 0. Then for k =
small enough,

Vn e N, F(x)) — F(x*) < 2(1 — V&)™ (F(x0) — F(x*)),

which means that an e-solution can be obtained in at most:

e _ 1 oo ((4LMo
= v ) .

The iterations require an estimation of x = 7 |



FISTA in the strongly convex case

; t t t t t t t
0 5000 10000 15000 20000 25000 30000 35000
X

log(|lg(xn)]|) along the iterations
FB, FISTA with a = 8, '

NSC with the true value of i, NSC with i = {5.

FISTA is efficient without knowing p and its convergence rate does not suffer
from any underestimation of u



Convergence rate analysis under some quadratic growth condition

Theorem (Aujol Dossal R. 2023, Aujol Dossal Labarriere R. 2024)

Let € > 0 and

o <5\/L(F<XO) = F*))

does not depend on any estimation of L.

Let (xn),crv be a sequence of iterates generated by the Nesterov's accelerated
GD with parameter c.. Then for k = small enough, an e-solution is reached in

at most: ) )
FISTA . 8e o :8ilog 5v/ LMy
€ 3V © VK ec
iterations.

Theorem (Aujol, Dossal, Labarriere, R. 2024)

If F satisfies some local quadratic growth condition then, for o large enough, the
sequence (xx)ken generated by Nesterov GD/FISTA strongly converges to a
minimizer of F.




Conclusion (1/2)

@ Inertial methods can be more efficient than the GD for the class of convex
functions having a quadratic growth

> No need to estimate the growth parameter u and the convergence rate
does not suffer from an underestimation of .

» Strong convergence of the iterates generated by the Nesterov's
accelerated GD/FISTA

@ Restarting FISTA can improve the convergence rate

» If F is pu—strongly convex, restarting FISTA each e\/% ensures an
exponential decay... but ¢ may be unknown.

» Estimation of [ Alamo et al 2020, Fercoq et al. 2023, Aujol Calatroni Dossal R.
Labarriere 2024...



Conclusion (2/2)

@ High resolution ODEs enables a more accurate description of the trajectories
of the optimization algorithm.

» Since 2016 Attouch and co-authors combine a Hessian-driven damping
term to an asymptotic vanishing damping term resulting in

X() + TX() + BHE(<(D)%(t) + VF(x(£)) = 0
» The HB scheme

Yn = Xp + a(anl - Xn) (2)
Xn+1 =Yn— SVF(Xn)

is associated to the following High Resolution ODE (Shi et al 2018)

X(t) +2/px(t) + (1 4+ /us)VF(x(t)) = 0. (3)



