
1/19

Un tour d’horizon des résultats récents sur les
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The setting: Large scale optimization

Let:
min
x∈RN

F (x), x ∈ RN

where F : RN → R ∪ {+∞}, convex or not, is assumed to have at least one
minimizer x∗.

Includes the composite case: F = f + h where f is a convex differentiable
function and h is a convex lower semicontinuous (lsc) simple function.

Finding critical points of F / minimizers of F

First order optimization methods i.e. methods that can only use the values
of the function F and/or the values of its gradient (or subgradient).

Convergence rates in term of decrease of F (xk)− F (x∗) ? Convergence
rates on ∥xk − x∗∥ ?
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Gradient Descent

Cauchy (1857) - Polyak (1964)

Assume that F is a convex differentiable function having a L− Lipschitz gradient
and at least one minimizer x∗. The gradient descent (GD) is defined by

xn+1 = xn − s∇F (xn) with s ⩽
1

L
.

1 The sequence (F (xn))n∈N is non increasing.

2 If F is convex, then (xn)n∈N weakly converges to a x∗ ∈ argmin(F ) and:

∀n ∈ N, F (xn)− F (x∗) ⩽
∥x0 − x∗∥2

2sn

The number of iterations to reach F (xn)− F (x∗) ⩽ ε is in O
(
1
ε

)
.

3 The rate 1
n can not be improved assuming only convexity.
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Stronger assumptions, better rates

Quadractic growth condition, a relaxation of strong convexity

If F is µ-strongly convex i.e. that G (x) := F (x)− µ
2 ∥x∥

2 is convex,
or
If F satisfies some quadratic growth condition around its minimizers:

There exists µ > 0 such that:

∀x ∈ RN , F (x)− F (x∗) ⩾
µ

2
d(x ,X ∗)2.

Then the iterates generated by GD with s = 1
L , satisfy:

F (xn)− F (x∗) = O ((1− κ)n) , κ =
µ

L
.

The number of iterations to reach F (xn)− F (x∗) ⩽ ε is in O
(
log
(
1
ε

))
.

Very slow if µ
L ≪ 1, but not pessimistic: rate achieved for F (x1, x2) =

µ
2 x

2
1 + L

2x
2
2 .



5/19

Can we do better with first order methods ?

Theorem (Nemirovski Yudin 1983, Nesterov 2003)

Let k ⩽ N−1
2 and L > 0. There exists a convex function F having a

L-Lipschitz gradient over RN such that for any first order method

F (xk)− F ∗ ⩾
3L∥x0 − x∗∥2

32(k + 1)2
.

↪→ The rate in O
(
1
k

)
for GD is not optimal.

↪→ Can we do better with first order methods if F is convex ? if F is
strongly convex ?

Yes, using inertial schemes.
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The Heavy Ball method
A first inertial method (Polyak 1964)

The Heavy ball method

yk = xk + a(xk − xk−1)
xk+1 = yk − s∇F (xk)

, α ∈ [0, 1], s > 0.

where a ∈ [0, 1] is an fixed inertial coefficient added to mitigate zigzagging.
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The Heavy Ball method
The dynamical system intuition

Let us consider:
ẍ(t) + αẋ(t) +∇F (x(t)) = 0.

Describe the motion of a body (a heavy ball) in a potential field F subject
to a friction proportional to its velocity.

Natural intuition: the body reaches a minimum of the potential F .

Link between the continuous ODE and the discrete scheme

The HB algorithm:

yk = xk + a(xk − xk−1)
xk+1 = yk − s∇F (xk)

, α ∈ [0, 1], s > 0.

can be seen as a discretization of the second order ODE:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

with: s = h2 and a = 1− αh (a: inertia parameter - α: friction parameter).
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The Heavy Ball method
Convergence results for strongly convex functions

yk = xk + a(xk − xk−1)

xk+1 = yk − s∇F (xk)

with (Polyak’s choice):

a =

(√
L−√

µ
√
L+

√
µ

)2

, s =

(
2√

L+
√
µ

)2

.

Theorem (Global convergence - [Polyak 1964])

Let F : Rn → R be a µ-strongly convex function of class C 2 and having a
L-Lipschitz continuous gradient. If s < 2

L then:

F (xk)− F ∗ ⩽

(√
L−√

µ
√
L+

√
µ

)k

︸ ︷︷ ︸
∼O

(
e
−2
√

µ
L
k

)
, k→+∞

(F (x0)− F ∗).
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The Heavy Ball method
How to choose α to optimize the convergence to a minimizer ?

For strongly convex functions of class C 2 having a L-Lipschitz gradient, the
optimal value of α is: α = 2

√
µ.

Changing the step and the inertia, [Ghadimi et al. 2015] prove the geometric cv
for C 1 strongly convex functions having a Lipschitz continuous gradient.

For strongly convex functions of class C 1 having a L-Lipschitz gradient
[Siegel 2019]: when α = 2

√
µ, F (x(t))− F ∗ = O

(
e
√
µt
)
.
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The Nesterov’s accelerated gradient method

Nesterov 1983

yk = xk +
tk − 1

tk+1
(xk − xk−1)

xk+1 = yk − s∇F (yk)

where the sequence (tk)k∈N is defined by: t1 = 1 and: tk+1 =
1+
√

1+4t2k
2 .

A modified version (Chambolle Dossal 2015)

yk = xk +
k

k + α
(xk − xk−1), α ⩾ 3

xk+1 = yk − s∇F (yk)

For the class of convex functions, the sequence of iterates satisfies:

∀k ∈ N, F (xk)− F ∗ ⩽
(α+ 1)∥x0 − x∗∥2

2sk2

and, for the modified version with α > 3, weakly converges to a minimizer of F .
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Link between the ODE and the optimization scheme

Discretization of an ODE, Su Boyd and Candès (2015)

xn+1 = yn − h∇F (yn) with yn = xn +
n

n + α
(xn − xn−1)

can be seen as a semi-implicit discretization of a solution of

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0 (ODE)

With ẋ(t0) = 0. Move of a solid in a potential field with a vanishing viscosity α
t .

General methodology to analyze optimization algorithms

Interpreting the optimization algorithm as a discretization of a given ODE.

Analysis of ODEs using a Lyapunov approach:

E(t) = t2(F (x(t))− F (x∗)) +
1

2
∥(α− 1)(x(t)− x∗) + tẋ(t)∥2 .

Building a sequence of discrete Lyapunov energies adapted to the
optimization scheme to get the same decay rates
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Convergence analysis of the Nesterov gradient method
Convergence rate in the continuous setting

Let F : RN → R be a differentiable convex function and x∗ ∈ argmin(F ) ̸= ∅.

If α ⩾ 3,

F (x(t))− F (x∗) = O
(

1

t2

)
[Attouch, Chbani,

Peypouquet, Redont 2016]

If α > 3, then x(t) cv to a minimizer of F and:

F (x(t))− F (x∗) = o

(
1

t2

) [Su, Boyd, Candes 2016]

[Chambolle, Dossal 2015]

[May 2017]

If α < 3 then no proof of cv of x(t) but:

F (x(t))− F (x∗) = O
(

1

t
2α
3

) [Attouch, Chbani, Riahi 2019]

[Aujol, Dossal 2017]
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The Nesterov’s accelerated gradient method
For the class of convex functions

Let F : RN → R be a differentiable convex function with X ∗ := argmin(F ) ̸= ∅.

yn = xn +
n

n + α
(xn − xn−1)

xn+1 = yn − h∇F (yn)
, α > 0, h <

1

L

If α ⩾ 3

F (xn)− F (x∗) = O
(

1

n2

)
[Nesterov 1984, Su, Boyd, Candes 2016,

Chambolle Dossal 2015, Attouch et al. 2018]

If α > 3, then (xn)n⩾1 cv and:

F (xn)− F (x∗) = o

(
1

n2

)
[Chambolle, Dossal 2015]

[Attouch, Peypouquet 2015]

If α ⩽ 3

F (xn)− F (x∗) = O
(

1

n
2α
3

)
.

[Attouch, Chbani, Riahi 2018]

[Apidopoulos, Aujol, Dossal 2018]
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GD vs Nesterov in the strongly convex case
Exponential rate vs Polynomial rate

Assume now that F is additionally µ-strongly convex, or satisfies some quadratic
growth condition:

∀x ∈ RN , F (x)− F ∗ ⩾
µ

2
d(x ,X ∗)2.

Convergence rate for GD

∀n ∈ N, F (xn)− F ∗ = O ((1− κ)n) .

The number of iterations required to reach an ε-solution is: nFBε ∼ 1
κ log

(
2L
ε2 M0

)
.

Convergence rate for Nesterov’s accelerated GD [Candès et al 2015], [Attouch

Cabot 2017], [ADR 2018].

If F has a unique minimizer,

∀α > 0, ∀n ∈ N, F (xn)− F ∗ = O
(
n−

2α
3

)
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Nesterov accelerated algorithm for strongly convex functions

Nesterov accelerated algorithm for strongly convex functions

yn = xn +
1−

√
κ

1 +
√
κ
(xn − xn−1)

xn+1 = yn − 1
L∇F (yn)

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is µ-strongly convex for some µ > 0. Let ε > 0. Then for κ = µ
L

small enough,

∀n ∈ N, F (xn)− F (x∗) ⩽ 2(1−
√
κ)n (F (x0)− F (x∗)) ,

which means that an ε-solution can be obtained in at most:

nNSCε =
1

|log(1−
√
κ)|

log

(
4LM0

ε2

)
. (1)

The iterations require an estimation of κ = µ
L !
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FISTA in the strongly convex case

log(∥g(xn)∥) along the iterations

FB, FISTA with α = 8, FISTA with α = 30,

NSC with the true value of µ, NSC with µ̃ = µ
10 .

FISTA is efficient without knowing µ and its convergence rate does not suffer
from any underestimation of µ
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Convergence rate analysis under some quadratic growth condition

Theorem (Aujol Dossal R. 2023, Aujol Dossal Labarrière R. 2024)

Let ε > 0 and

αε := 3 log

(
5
√
L(F (x0)− F ∗)

eε

)
does not depend on any estimation of µ.

Let (xn)n∈RN be a sequence of iterates generated by the Nesterov’s accelerated
GD with parameter αε. Then for κ = µ

L small enough, an ε-solution is reached in
at most:

nFISTAε :=
8e2

3
√
κ
αε =

8e2√
κ
log

(
5
√
LM0

eε

)
iterations.

Theorem (Aujol, Dossal, Labarrière, R. 2024)

If F satisfies some local quadratic growth condition then, for α large enough, the
sequence (xk)k∈N generated by Nesterov GD/FISTA strongly converges to a
minimizer of F .
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Conclusion (1/2)

Inertial methods can be more efficient than the GD for the class of convex
functions having a quadratic growth

▶ No need to estimate the growth parameter µ and the convergence rate
does not suffer from an underestimation of µ.

▶ Strong convergence of the iterates generated by the Nesterov’s
accelerated GD/FISTA

Restarting FISTA can improve the convergence rate

▶ If F is µ−strongly convex, restarting FISTA each e
√

L
µ ensures an

exponential decay... but µ may be unknown.

▶ Estimation of µ: Alamo et al 2020, Fercoq et al. 2023, Aujol Calatroni Dossal R.

Labarrière 2024...
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Conclusion (2/2)

High resolution ODEs enables a more accurate description of the trajectories
of the optimization algorithm.

▶ Since 2016 Attouch and co-authors combine a Hessian-driven damping
term to an asymptotic vanishing damping term resulting in

ẍ(t) +
α

t
ẋ(t) + βHF (x(t))ẋ(t) +∇F (x(t)) = 0

▶ The HB scheme {
yn = xn + α(xn−1 − xn)
xn+1 = yn − s∇F (xn)

(2)

is associated to the following High Resolution ODE (Shi et al 2018)

ẍ(t) + 2
√
µẋ(t) + (1 +

√
µs)∇F (x(t)) = 0. (3)


