Un tour d'horizon des résultats récents sur les algorithmes inertiels dans un cadre déterministe

Aude Rondepierre

Joint work with Jean-François Aujol, Charles Dossal,

Julien Hermant, Hippolyte Labarrière

Institut de Mathématiques de Toulouse, INSA de Toulouse

Congrès SMAI 2025 - MS Optimisation, un hommage à Hedy Attouch

The setting: Large scale optimization

Let:

$$\min_{\in \mathbb{R}^N} F(x), \quad x \in \mathbb{R}^N$$

where $F : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, convex or not, is assumed to have at least one minimizer x^* .

Includes the composite case: F = f + h where f is a convex differentiable function and h is a convex lower semicontinuous (lsc) simple function.

Finding critical points of F / minimizers of F

- First order optimization methods i.e. methods that can only use the values of the function *F* and/or the values of its gradient (or subgradient).
- Convergence rates in term of decrease of F(xk) F(x*)? Convergence rates on ||xk x*||?

Cauchy (1857) - Polyak (1964)

Assume that F is a convex differentiable function having a L - Lipschitz gradient and at least one minimizer x^* . The gradient descent (GD) is defined by

$$x_{n+1} = x_n - s \nabla F(x_n)$$
 with $s \leq \frac{1}{L}$.

1 The sequence $(F(x_n))_{n \in \mathbb{N}}$ is non increasing.

② If *F* is convex, then $(x_n)_{n \in \mathbb{N}}$ weakly converges to a $x^* \in \arg \min(F)$ and:

$$\forall n \in \mathbb{N}, \ F(x_n) - F(x^*) \leqslant \frac{\|x_0 - x^*\|^2}{2sn}$$

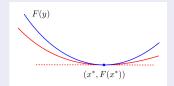
The number of iterations to reach $F(x_n) - F(x^*) \leq \varepsilon$ is in $\mathcal{O}(\frac{1}{\varepsilon})$.

(3) The rate $\frac{1}{n}$ can not be improved assuming only convexity.

Stronger assumptions, better rates

Quadractic growth condition, a relaxation of strong convexity If F is μ -strongly convex i.e. that $G(x) := F(x) - \frac{\mu}{2} ||x||^2$ is convex, or

If F satisfies some quadratic growth condition around its minimizers:



There exists $\mu > 0$ such that:

$$\forall x \in \mathbb{R}^N, \ F(x) - F(x^*) \geq \frac{\mu}{2} d(x, X^*)^2.$$

Then the iterates generated by GD with $s = \frac{1}{I}$, satisfy:

$$F(x_n) - F(x^*) = \mathcal{O}\left((1-\kappa)^n\right), \qquad \kappa = \frac{\mu}{l}.$$

The number of iterations to reach $F(x_n) - F(x^*) \leq \varepsilon$ is in $\mathcal{O}(\log(\frac{1}{\varepsilon}))$.

Very slow if $\frac{\mu}{I} \ll 1$, but not pessimistic: rate achieved for $F(x_1, x_2) = \frac{\mu}{2}x_1^2 + \frac{L}{2}x_2^2$.

Theorem (Nemirovski Yudin 1983, Nesterov 2003)

Let $k \leq \frac{N-1}{2}$ and L > 0. There exists a convex function F having a *L*-Lipschitz gradient over \mathbb{R}^N such that for any first order method

$$F(x_k) - F^* \geqslant rac{3L \|x_0 - x^*\|^2}{32(k+1)^2}.$$

- \hookrightarrow The rate in $\mathcal{O}\left(\frac{1}{k}\right)$ for GD is not optimal.
- \hookrightarrow Can we do better with first order methods if F is convex ? if F is strongly convex ?

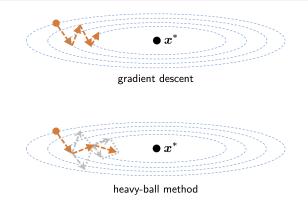
Yes, using inertial schemes.

The Heavy Ball method A first inertial method (Polyak 1964)

The Heavy ball method

$$egin{array}{rcl} y_k &=& x_k + {\it a}(x_k - x_{k-1}) \ x_{k+1} &=& y_k - {\it s}
abla {\it F}(x_k) \end{array}, \ lpha \in [0,1], \ {\it s} > 0.$$

where $a \in [0, 1]$ is an *fixed* inertial coefficient added to mitigate zigzagging.



The Heavy Ball method The dynamical system intuition

Let us consider:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0.$$

- Describe the motion of a body (a heavy ball) in a potential field *F* subject to a friction proportional to its velocity.
- Natural intuition: the body reaches a minimum of the potential F.

Link between the continuous ODE and the discrete scheme The HB algorithm:

$$egin{array}{rcl} y_k &=& x_k + a(x_k - x_{k-1}) \ x_{k+1} &=& y_k - s
abla F(x_k) \end{array}, \ lpha \in [0,1], \ s>0 \end{array}$$

can be seen as a discretization of the second order ODE:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

with: $s = h^2$ and $a = 1 - \alpha h$ (a: inertia parameter - α : friction parameter).

The Heavy Ball method

Convergence results for strongly convex functions

$$y_k = x_k + a(x_k - x_{k-1})$$
$$x_{k+1} = y_k - s \nabla F(x_k)$$

with (Polyak's choice):

$$a = \left(rac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}
ight)^2, \quad s = \left(rac{2}{\sqrt{L} + \sqrt{\mu}}
ight)^2$$

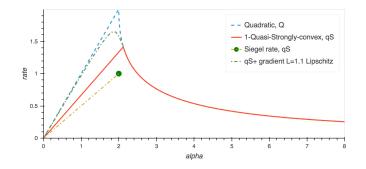
Theorem (Global convergence - [Polyak 1964])

Let $F : \mathbb{R}^n \to \mathbb{R}$ be a μ -strongly convex function of class C^2 and having a *L*-Lipschitz continuous gradient. If $s < \frac{2}{L}$ then:

$$F(x_k) - F^* \leq \underbrace{\left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^k}_{\sim O\left(e^{-2\sqrt{\frac{\mu}{L}}k}\right), \ k \to +\infty} (F(x_0) - F^*).$$

The Heavy Ball method

How to choose α to optimize the convergence to a minimizer ?



- For strongly convex functions of class C² having a L-Lipschitz gradient, the optimal value of α is: α = 2√μ.
- Changing the step and the inertia, [Ghadimi et al. 2015] prove the geometric cv for C¹ strongly convex functions having a Lipschitz continuous gradient.
- For strongly convex functions of class C^1 having a *L*-Lipschitz gradient [Siegel 2019]: when $\alpha = 2\sqrt{\mu}$, $F(x(t)) F^* = O(e^{\sqrt{\mu}t})$.

The Nesterov's accelerated gradient method

Nesterov 1983

$$y_{k} = x_{k} + \frac{t_{k} - 1}{t_{k+1}} (x_{k} - x_{k-1})$$

$$y_{k+1} = y_{k} - s \nabla F(y_{k})$$

where the sequence $(t_k)_{k\in\mathbb{N}}$ is defined by: $t_1 = 1$ and: $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$.

A modified version (Chambolle Dossal 2015)

X

$$y_k = x_k + \frac{k}{k+\alpha}(x_k - x_{k-1}), \quad \alpha \ge 3$$

$$x_{k+1} = y_k - s\nabla F(y_k)$$

For the class of convex functions, the sequence of iterates satisfies:

$$\forall k \in \mathbb{N}, \ F(x_k) - F^* \leq \frac{(\alpha+1) \|x_0 - x^*\|^2}{2sk^2}$$

and, for the modified version with $\alpha>$ 3, weakly converges to a minimizer of F $_{\rm 10/19}$

Link between the ODE and the optimization scheme

Discretization of an ODE, Su Boyd and Candès (2015)

$$x_{n+1} = y_n - h \nabla F(y_n)$$
 with $y_n = x_n + \frac{n}{n+\alpha}(x_n - x_{n-1})$

can be seen as a semi-implicit discretization of a solution of

$$\ddot{x}(t) + \frac{\alpha}{t}\dot{x}(t) + \nabla F(x(t)) = 0$$
 (ODE)

With $\dot{x}(t_0) = 0$. Move of a solid in a potential field with a vanishing viscosity $\frac{\alpha}{t}$.

General methodology to analyze optimization algorithms

- Interpreting the optimization algorithm as a discretization of a given ODE.
- Analysis of ODEs using a Lyapunov approach:

$$\mathcal{E}(t) = t^2(F(x(t)) - F(x^*)) + rac{1}{2} \|(lpha - 1)(x(t) - x^*) + t\dot{x}(t)\|^2$$

 Building a sequence of discrete Lyapunov energies adapted to the optimization scheme to get the same decay rates

Convergence analysis of the Nesterov gradient method Convergence rate in the continuous setting

Let $F : \mathbb{R}^N \to \mathbb{R}$ be a differentiable convex function and $x^* \in \arg\min(F) \neq \emptyset$.

If
$$\alpha \ge 3$$
,
 $F(x(t)) - F(x^*) = \mathcal{O}\left(\frac{1}{t^2}\right)$

• If $\alpha > 3$, then x(t) cv to a minimizer of F and: $F(x(t)) - F(x^*) = o\left(\frac{1}{t^2}\right)$ [Chamb [May 20]

F and: [Su, Boyd, Candes 2016] [Chambolle, Dossal 2015] [May 2017]

[Attouch, Chbani, Peypouquet, Redont 2016]

• If $\alpha < 3$ then no proof of cv of x(t) but:

$$F(x(t)) - F(x^*) = \mathcal{O}\left(\frac{1}{t^{\frac{2\alpha}{3}}}\right)$$

[Attouch, Chbani, Riahi 2019] [Aujol, Dossal 2017]

The Nesterov's accelerated gradient method For the class of convex functions

Let $F : \mathbb{R}^N \to \mathbb{R}$ be a differentiable convex function with $X^* := \arg \min(F) \neq \emptyset$.

$$y_n = x_n + \frac{n}{n+\alpha}(x_n - x_{n-1}), \quad \alpha > 0, \ h < \frac{1}{L}$$
$$x_{n+1} = y_n - h\nabla F(y_n)$$

• If
$$\alpha \ge 3$$

 $F(x_n) - F(x^*) = \mathcal{O}\left(\frac{1}{n^2}\right)$
• If $\alpha > 3$, then $(x_n)_{n \ge 1}$ cv and:
 $F(x_n) - F(x^*) = o\left(\frac{1}{n^2}\right)$
• If $\alpha \le 3$

 $F(x_n) - F(x^*) = \mathcal{O}\left(\frac{1}{n^{\frac{2\alpha}{3}}}\right).$

[Nesterov 1984, Su, Boyd, Candes 2016, Chambolle Dossal 2015, Attouch et al. 2018

[Chambolle, Dossal 2015] [Attouch, Peypouquet 2015]

[Attouch, Chbani, Riahi 2018] [Apidopoulos, Aujol, Dossal 2018]

GD vs Nesterov in the strongly convex case Exponential rate vs Polynomial rate

Assume now that F is additionally μ -strongly convex, or satisfies some quadratic growth condition:

$$\forall x \in \mathbb{R}^N, \ F(x) - F^* \geqslant rac{\mu}{2} d(x, X^*)^2.$$

Convergence rate for GD

$$\forall n \in \mathbb{N}, F(x_n) - F^* = \mathcal{O}\left((1-\kappa)^n\right).$$

The number of iterations required to reach an ε -solution is: $n_{\varepsilon}^{FB} \sim \frac{1}{\kappa} \log \left(\frac{2L}{\varepsilon^2} M_0 \right)$.

Convergence rate for Nesterov's accelerated GD [Candès et al 2015], [Attouch Cabot 2017], [ADR 2018].

If F has a unique minimizer,

$$\forall \alpha > 0, \ \forall n \in \mathbb{N}, \ F(x_n) - F^* = \mathcal{O}\left(n^{-\frac{2\alpha}{3}}\right)$$

Nesterov accelerated algorithm for strongly convex functions

Nesterov accelerated algorithm for strongly convex functions

$$y_n = x_n + \frac{1 - \sqrt{\kappa}}{1 + \sqrt{\kappa}} (x_n - x_{n-1})$$
$$x_{n+1} = y_n - \frac{1}{L} \nabla F(y_n)$$

Theorem (Theorem 2.2.3, Nesterov 2013)

Assume that F is μ -strongly convex for some $\mu > 0$. Let $\varepsilon > 0$. Then for $\kappa = \frac{\mu}{L}$ small enough,

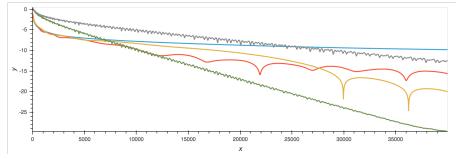
$$\forall n \in \mathbb{N}, \ F(x_n) - F(x^*) \leq 2(1 - \sqrt{\kappa})^n \left(F(x_0) - F(x^*)\right)$$

which means that an ε -solution can be obtained in at most:

$$n_{\varepsilon}^{NSC} = \frac{1}{\left|\log(1-\sqrt{\kappa})\right|} \log\left(\frac{4LM_0}{\varepsilon^2}\right).$$
(1)

The iterations require an estimation of $\kappa = \frac{\mu}{L}$!

FISTA in the strongly convex case



 $\log(||g(x_n)||)$ along the iterations

FB, FISTA with $\alpha = 8$, FISTA with $\alpha = 30$,

NSC with the true value of μ , NSC with $\tilde{\mu} = \frac{\mu}{10}$.

FISTA is efficient without knowing μ and its convergence rate does not suffer from any underestimation of μ

Convergence rate analysis under some quadratic growth condition

Theorem (Aujol Dossal R. 2023, Aujol Dossal Labarrière R. 2024)

Let $\varepsilon > 0$ and

$$\alpha_{\varepsilon} := 3\log\left(\frac{5\sqrt{L(F(x_0) - F^*)}}{e\varepsilon}\right) \quad \text{does not depend on any estimation of } \mu.$$

Let $(x_n)_{n \in \mathbb{R}^N}$ be a sequence of iterates generated by the Nesterov's accelerated GD with parameter α_{ε} . Then for $\kappa = \frac{\mu}{L}$ small enough, an ε -solution is reached in at most:

$$n_{\varepsilon}^{FISTA} := \frac{8e^2}{3\sqrt{\kappa}} \alpha_{\varepsilon} = \frac{8e^2}{\sqrt{\kappa}} \log\left(\frac{5\sqrt{LM_0}}{e\varepsilon}\right)$$

iterations.

Theorem (Aujol, Dossal, Labarrière, R. 2024)

If F satisfies some local quadratic growth condition then, for α large enough, the sequence $(x_k)_{k\in\mathbb{N}}$ generated by Nesterov GD/FISTA strongly converges to a minimizer of F.

- Inertial methods can be more efficient than the GD for the class of convex functions having a quadratic growth
 - No need to estimate the growth parameter μ and the convergence rate does not suffer from an underestimation of μ.
 - Strong convergence of the iterates generated by the Nesterov's accelerated GD/FISTA
- Restarting FISTA can improve the convergence rate
 - ▶ If F is μ -strongly convex, restarting FISTA each $e\sqrt{\frac{L}{\mu}}$ ensures an exponential decay... but μ may be unknown.
 - Estimation of µ: Alamo et al 2020, Fercoq et al. 2023, Aujol Calatroni Dossal R. Labarrière 2024...

- High resolution ODEs enables a more accurate description of the trajectories of the optimization algorithm.
 - Since 2016 Attouch and co-authors combine a Hessian-driven damping term to an asymptotic vanishing damping term resulting in

$$\ddot{x}(t) + rac{lpha}{t}\dot{x}(t) + eta H_F(x(t))\dot{x}(t) +
abla F(x(t)) = 0$$

The HB scheme

$$\begin{cases} y_n = x_n + \alpha(x_{n-1} - x_n) \\ x_{n+1} = y_n - s \nabla F(x_n) \end{cases}$$
(2)

is associated to the following High Resolution ODE (Shi et al 2018)

$$\ddot{x}(t) + 2\sqrt{\mu}\dot{x}(t) + (1 + \sqrt{\mu}s)\nabla F(x(t)) = 0.$$
(3)