
POPULATION-BASED SEQUENTIAL DATA 
ASSIMILATION FOR ONCOLOGY MODELING:  
THEORY AND PRACTICAL ILLUSTRATIONS

Annabelle Collin

MONC Modeling in 
ONCology

Laboratoire de 
Mathématiques  
Jean Leray



Introduction



ANNABELLE COLLIN 

100 µm

0 V/cm 500 V/cm 1000 V/cm 2000 V/cm

Exposure to pulsed electric field at t = 0 min

Growth follow up over time following exposure to pulsed electric field  

2000 V/cm

500 V/cm

1000 V/cm

1 h 4 h 1 day 10 days

1 h 4 h 1 day 10 days

1 h 4 h 1 day 10 days

Figure 1: Bright field micrographs of multicellular spheroids followed by fluorescence microscopy
of control (0 V.cm�1), 500 V.cm�1, 1000 V.cm�1 and 2000 V.cm�1-treated spheroids, after the
application of electric pulses (N=80, t = 100 µs, ⌫= 1 Hz). Green color: green fluorescing protein
in living cells and red color: propidium iodide. Top: immediately after pulses application.
Bottom: 1h, 4h, 1 day and 10 days after pulses application.

(HCT116–GFP). Cells were grown under standard conditions (5% CO2, 37�C) in the Dul-
becco’s Modified Eagle Medium (DMEM, Gibco-Invitrogen, Carlsbad, CA, USA) containing
4.5 g/L glucose, L-Glutamine and pyruvate, 1% of penicillin/streptomycin, and 10% of fetal
bovine serum. Multicellular cell spheroids were made by seeding 500 cells per well in Costar
Corning Ultra-low attachment 96-well plates (Fisher Scientific, Illkirch, France). Plates were
kept in 5% CO2 humidified atmosphere at 37�C. Multicellular spheroids acquired a cohesive
structure and were submitted to pulsed electric field 3 days following the seeding. After the
electric exposure (detailed below), the spheroids were repositioned in ultra-low attachment
plates, in which they were kept for 10 days. Fresh medium was added to the spheroids at
a 3 to 4 days interval. Multicellular spheroids growth was monitored by fluorescence and
bright field videomicroscopy using the IncuCyte Live Cell Analysis System Microscope (Es-
sen BioScience IncuCyte™, Herts, Welwyn Garden City, UK) at a magnification multiplied
by ⇥ 10.

Electroporation was achieved following the delivery of 80 unipolar pulses at 0 V.cm�1

(control) or 500 V.cm�1 or 1000 V.cm�1 or 2000 V.cm�1, the duration of a pulse was 100 µs,
and the pulses were applied at a frequency of 1 Hz. The pulses were applied to multicellular
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spheroids in a low conduction pulsing medium (see [5, 18]) with a parallel plate stainless
steel electrode (the plate distance was 0.4 cm) connected to the Electrocell S 20 generator
(Leroy Biotech, St Orens, France), following which the spheroids were rinsed in phosphate
saline bu↵er and transferred to the cell growth medium. Presented results were obtained
in two independent experiments. For each experiment, 6 to 8 spheroids were pulsed. Two
control groups were used and are denoted either as free growth or 0 V.cm�1. In free growth
condition, the spheroids were kept in growth medium. For 0 V.cm�1 condition, the spheroids
were transferred to the low conduction bu↵er for 10 minutes, following which the spheroids
were rinsed in phosphate saline bu↵er and re-transferred to growth medium.

Images were analyzed with the ImageJ software (U.S. National Institute of Health,
Bethesda, MD, USA). The software was used to determine the mean fluorescence intensity of
spheroids, and to measure spheroids area in the equatorial plane. The representative micro-
graphs of multicellular spheroids followed by fluorescence microscopy of control (0 V.cm�1),
500 V.cm�1, 1000 V.cm�1 and 2000 V.cm�1-treated spheroids, immediately after the appli-
cation of electric pulses are shown on Figure 1. The green color reflects the green fluorescing
protein in living cells and the red color corresponds to propidium iodide, a red fluorescent
probe that penetrates the cells when permeabilization occurs on cell membrane. Note that
at 0 V.cm�1 no red fluorescence is visible, while at higher electric field the degree of red
color increases, as increasingly more propidium iodide penetrates the cells illustrating the
cell permeabilization. Figure 1-Top (resp. Bottom) shows the spheroids immediately (resp.
1h, 4h, 1 day and 10 days) after the shock. Note that 500 V.cm�1 – pulses do not a↵ect cell
viability (as indicated by green fluorescence and the growth of the cellular mass), while at
1000 V.cm�1 we have a transient disappearance of green fluorescence, and at 2000 V.cm�1

we have a permanent disappearance of green fluorescence.

2.2 Data presentation

Figure 2: Volume evolutions of multicellular spheroids. Left - Control experiment (24 cases).
Right - Electroporation experiment (59 cases divided into 4 categories: 13 for EF0, 16 for
EF500, 14 for EF1000 and 16 for EF2000).

Figure 2 shows the evolution of the volume of the multicellular spheroids in control (Left
panel) and electroporation (Right panel) configurations. In total 83 multicellular spheroids
were tracked over 250 hours. Measurements, as plotted on Figure 2 were obtained from
fluorescence micrographs as described in Section 2.1.

The cohort is divided as follows:

• 24 multicellular spheroids correspond to the control spheroids (free growth). We ex-
clude the spheroids 3 and 24 as dynamics strongly di↵ers from the others.
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• Available data: medical imaging, clinical data, biological data …

MENINGIOMAS (CHU BORDEAUX, MRI  T1)
a. b. c. 

Figure 1: Images extracted from MRI T1 sequence with gadolinium contrast agent. The

meningioma region, highlighted by a green contour line, corresponds to times t0 = 0 day

(a), t1 = 169 days (b) and t2 = 330 days (c).

strategy to adopt. In the first place, an accurate, patient-dependent,
tumoral growth model should predict the tumoral mass (or volume)
evolution to help clinicians in the choice "removal surgery versus mon-
itoring". In the second place, the spatial resolution of the same growth
model should predict the meningioma extension in order to determine
the possibility of tumoral invasion in sensitive skull area.

2 Tumoral growth modeling, prediction and
simulation

The model

The model use in this paper is close to the one introduced in [9, 1]. The
description of the tumoral growth of meningioma is built from several
biological hypothesis:

• The tumoral cell density P increase is driven by the time-dependent
tumoral growth capacity M . (first equation of (1))

• The tumoral growth capacity is a scalar that decreases exponen-
tially over time with a characteristic ratio ↵. (second equation of
(1))

• The healthy cell density S is conserved over time. (third equation
of (1))

The choice of these hypothesis leads to a simple description of the
tumoral growth via the following PDE system:
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Figure 1: Bright field micrographs of multicellular spheroids followed by fluorescence microscopy
of control (0 V.cm�1), 500 V.cm�1, 1000 V.cm�1 and 2000 V.cm�1-treated spheroids, after the
application of electric pulses (N=80, t = 100 µs, ⌫= 1 Hz). Green color: green fluorescing protein
in living cells and red color: propidium iodide. Top: immediately after pulses application.
Bottom: 1h, 4h, 1 day and 10 days after pulses application.
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plates, in which they were kept for 10 days. Fresh medium was added to the spheroids at
a 3 to 4 days interval. Multicellular spheroids growth was monitored by fluorescence and
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by ⇥ 10.
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(Leroy Biotech, St Orens, France), following which the spheroids were rinsed in phosphate
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Figure 2 shows the evolution of the volume of the multicellular spheroids in control (Left
panel) and electroporation (Right panel) configurations. In total 83 multicellular spheroids
were tracked over 250 hours. Measurements, as plotted on Figure 2 were obtained from
fluorescence micrographs as described in Section 2.1.
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• Link between these series of data?

• Temporal evolution of some quantities (volume, shape or heterogeneity of the tumor)


• Can we model these processes?

• Yes: using physical or biological laws …

• Lead to Ordinary Differential Equations or Partial Differential Equations if spatial aspects


• Objectives: 

• help biologists to understand a phenomenon ; 

• help clinicians to establish a diagnosis or to improve the patient follow-up …

• Available data: medical imaging, clinical data, biological data …

MENINGIOMAS (CHU BORDEAUX, MRI  T1)
a. b. c. 

Figure 1: Images extracted from MRI T1 sequence with gadolinium contrast agent. The

meningioma region, highlighted by a green contour line, corresponds to times t0 = 0 day

(a), t1 = 169 days (b) and t2 = 330 days (c).
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tumoral growth model should predict the tumoral mass (or volume)
evolution to help clinicians in the choice "removal surgery versus mon-
itoring". In the second place, the spatial resolution of the same growth
model should predict the meningioma extension in order to determine
the possibility of tumoral invasion in sensitive skull area.

2 Tumoral growth modeling, prediction and
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description of the tumoral growth of meningioma is built from several
biological hypothesis:

• The tumoral cell density P increase is driven by the time-dependent
tumoral growth capacity M . (first equation of (1))

• The tumoral growth capacity is a scalar that decreases exponen-
tially over time with a characteristic ratio ↵. (second equation of
(1))

• The healthy cell density S is conserved over time. (third equation
of (1))

The choice of these hypothesis leads to a simple description of the
tumoral growth via the following PDE system:
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strategy to adopt. In the first place, an accurate, patient-dependent,
tumoral growth model should predict the tumoral mass (or volume)
evolution to help clinicians in the choice "removal surgery versus mon-
itoring". In the second place, the spatial resolution of the same growth
model should predict the meningioma extension in order to determine
the possibility of tumoral invasion in sensitive skull area.
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The model use in this paper is close to the one introduced in [9, 1]. The
description of the tumoral growth of meningioma is built from several
biological hypothesis:

• The tumoral cell density P increase is driven by the time-dependent
tumoral growth capacity M . (first equation of (1))

• The tumoral growth capacity is a scalar that decreases exponen-
tially over time with a characteristic ratio ↵. (second equation of
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Difficulties & population-based strategies
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• Most estimation strategies are not robust enough in many situations:

• when measurements are too sparse,

• or when measurements are noisy, 

• or when strong parameter priors* are not available.

Estimation

Parameters  



Hypothesis (example)


θ ∈ ℝNθ

θ ∼ 𝒩(θ0, Σθ) *

Observations
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Difficulties & population-based strategies
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• Most estimation strategies are not robust enough in many situations:

• when measurements are too sparse,

• or when measurements are noisy, 

• or when strong parameter priors are unavailable.

Observations

M. Lavielle. Mixed effects models for the population approach: models, tasks, 
methods and tools. CRC press, 2014.

Estimation

Parameters of each patient  
or each biological experiment  




Hypothesis (mixed-effect models)






Estimation performed by pooling all 

subject measurements together 


and estimating a global distribution of 

uncertainties in the population.

i
θi ∈ ℝNθ

θi = θf + θi
m

θi
m ∼ 𝒩(0,Σθ)



A quite simple example

Joint work with 
Virginie Montalibet and Olivier Saut 

[clinicians]  
Julien Engelhardt and Hugues Loiseau (neurosurgeons)
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Meningioma - objective
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• Meningiomas: intracranial tumors with slow growth & surgical ablation as main treatment

• Cohort of 315 patients with 333 meningiomas

• Objective:  Help decision by predicting the tumor progression
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meningioma region, highlighted by a green contour line, corresponds to times t0 = 0 day

(a), t1 = 169 days (b) and t2 = 330 days (c).

strategy to adopt. In the first place, an accurate, patient-dependent,
tumoral growth model should predict the tumoral mass (or volume)
evolution to help clinicians in the choice "removal surgery versus mon-
itoring". In the second place, the spatial resolution of the same growth
model should predict the meningioma extension in order to determine
the possibility of tumoral invasion in sensitive skull area.

2 Tumoral growth modeling, prediction and
simulation

The model

The model use in this paper is close to the one introduced in [9, 1]. The
description of the tumoral growth of meningioma is built from several
biological hypothesis:

• The tumoral cell density P increase is driven by the time-dependent
tumoral growth capacity M . (first equation of (1))

• The tumoral growth capacity is a scalar that decreases exponen-
tially over time with a characteristic ratio ↵. (second equation of
(1))

• The healthy cell density S is conserved over time. (third equation
of (1))

The choice of these hypothesis leads to a simple description of the
tumoral growth via the following PDE system:
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Dura 
materBone of 

skull

Meningioma

Brain

Pat. Age G Pos. Times [months] Volumes [cm3]
1 52 F ER 0 | 5 | 13 | 25 0.7 | 0.8 | 0.9 | 1.7
2 48 M BLPS 0 | 6 | 14 6.1 | 6.3 | 6.4
3 50 F BRPM 0 | 31 | 67 | 93 2.2 | 3.5 | 3.7 | 4.0
4 53 F BMPS 0 | 5 | 21 | 44 4.4 | 4.7 | 5.6 | 7.7
5 33 F BLPI 0 | 20 | 32 | 50 1.5 | 2.7 | 3.6 | 5.7
6 44 F IMAM 0 | 28 | 40 | 52 1.7 | 2.3 | 2.7 | 3.2
7 34 F BLAS 0 | 12 | 24 1.2 | 1.9 | 2.7
8 70 F ELI 0 | 5 | 10 1.0 | 2.0 | 3.4
9 77 F BLPI 0 | 23 | 42 0.6 | 1.5 | 3.3
10 50 F IRAS 0 | 39 | 62 | 95 13.4 | 15.5 | 15.9 | 16.3
11 52 M BRAS 0 | 32 | 62 1.3 | 1.7 | 1.8
12 60 F BRAS 0 | 74 | 86 4.9 | 7.6 | 7.7
13 64 F ER 0 | 6 | 12 | 29 | 53 2.3 | 2.5 | 2.9 | 3.6 | 4.2
14 34 F EL 0 | 11 | 37 | 61 | 68 | 81 2.8 | 3.0 | 4.0 | 6.0 | 6.2 | 6.8
15 57 F BRMI 0 | 38 | 83 1.5 | 2.2 | 2.6
16 39 F BMAS 0 | 7 | 14 | 22 | 34 1.0 | 1.7 | 2.1 | 2.0 | 2.2
17 66 F BRMS 0 | 13 | 33 | 59 4.2 | 4.0 | 4.0 | 4.4
18 52 F BLMS 0 | 7 | 21 3.5 | 4.9 | 6.9
19 62 F ER 0 | 30 | 46 | 60 2.5 | 3.1 | 3.6 | 3.9
20 53 F BRPM 0 | 7 | 21 0.6 | 0.8 | 0.8
21 69 F IMMS 0 | 6 | 23 | 39 10.4 | 10.4 | 12.2 | 13.1
22 80 F ELI 0 | 8 | 10 2.5 | 5.6 | 7.1
23 45 M IMAS 0 | 7 | 15 5.5 | 5.7 | 6.3
25 49 F EM 0 | 7 | 14 | 26 2.6 | 3.1 | 3.6 | 3.5
26 46 F BRAS 0 | 6 | 21 | 37 1.9 | 1.9 | 2.1 | 2.3
27 58 F ER 0 | 6 | 13 | 40 2.5 | 2.5 | 2.6 | 2.7
28 81 F BMPI 0 | 20 | 43 | 64 1.9 | 3.3 | 5.8 | 7.6
29 40 F ER 0 | 5 | 13 | 33 0.4 | 0.4 | 0.5 | 0.8
30 40 F ER 0 | 5 | 13 | 33 0.1 | 0.1 | 0.2 | 1.2
31 44 F IMPS 0 | 4 | 7 | 33 0.5 | 0.6 | 0.6 | 0.8
32 69 F BLAS 0 | 7 | 14 1.6 | 1.7 | 2.0
33 39 F EL 0 | 7 | 23 1.7 | 1.9 | 1.9
34 39 F EL 0 | 7 | 23 2.8 | 2.7 | 3.1
35 64 F BLAS 0 | 27 | 46 5.6 | 5.8 | 6.1
36 47 F EL 0 | 6 | 12 1.2 | 1.2 | 1.9
37 66 F ER 0 | 5 | 12 0.9 | 0.9 | 1.1
38 52 F BMPS 0 | 5 | 13 1.8 | 1.7 | 2.1
39 79 F IMMS 0 | 10 | 25 1.3 | 1.3 | 1.6
40 48 F BMPM 0 | 18 | 29 2.1 | 3.0 | 3.9

Table 1. Presentation of the patient cohort: age at diagnostic, gender,
meningioma position, times and volumes of available examinations.
The position is summarized by 2 or 4 letters where letters indicate at the
first position, B border, I interior, E eye, and at the other positions: L left,
R right, A anterior, P posterior, I inferior, S superior and M middle.

the tumor at a later time corresponding to the time of the third available examination. 82

This allows us to evaluate the predictive power of our models. 83

2 Modeling of meningiomas evolution 84

In this section, we describe the spatio-temporal evolution of populations of tumor cells 85

that is controlled by a “carrying capacity” parameter (in the spirit of [36]). In this work, 86

spatially distributed and spatially independent carrying capacities are investigated 87
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31 44 F IMPS 0 | 4 | 7 | 33 0.5 | 0.6 | 0.6 | 0.8
32 69 F BLAS 0 | 7 | 14 1.6 | 1.7 | 2.0
33 39 F EL 0 | 7 | 23 1.7 | 1.9 | 1.9
34 39 F EL 0 | 7 | 23 2.8 | 2.7 | 3.1
35 64 F BLAS 0 | 27 | 46 5.6 | 5.8 | 6.1
36 47 F EL 0 | 6 | 12 1.2 | 1.2 | 1.9
37 66 F ER 0 | 5 | 12 0.9 | 0.9 | 1.1
38 52 F BMPS 0 | 5 | 13 1.8 | 1.7 | 2.1
39 79 F IMMS 0 | 10 | 25 1.3 | 1.3 | 1.6
40 48 F BMPM 0 | 18 | 29 2.1 | 3.0 | 3.9

Table 1. Presentation of the patient cohort: age at diagnostic, gender,
meningioma position, times and volumes of available examinations.
The position is summarized by 2 or 4 letters where letters indicate at the
first position, B border, I interior, E eye, and at the other positions: L left,
R right, A anterior, P posterior, I inferior, S superior and M middle.

the tumor at a later time corresponding to the time of the third available examination. 82

This allows us to evaluate the predictive power of our models. 83

2 Modeling of meningiomas evolution 84

In this section, we describe the spatio-temporal evolution of populations of tumor cells 85

that is controlled by a “carrying capacity” parameter (in the spirit of [36]). In this work, 86

spatially distributed and spatially independent carrying capacities are investigated 87

December 19, 2019 4/21
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Meningioma - 0D model & description

9

• Meningiomas: intracranial tumors with slow growth & surgical ablation as main treatment

• Cohort of 315 patients with 333 meningiomas

• Objective:  Help decision by predicting the tumor progression

 J. Engelhardt, V. Montalibet, H. Loiseau, O. Saut, and A. Collin. Evaluation of four tumour 
growth models to describe the natural history of meningiomas. EBioMedicine, 2023.
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Exponential model 

Gompertz model 

Power model 


Mixed-effects approach (ex. for Gompertz): 

       

with 

V(t) = V0 + at
V(t) = V0eat

V(t) = V0e
a
b (1−e−bt)

V(t) = (V1−b
0 + a(1 − b)t) 1

1 − b

Vj
0 = Vj

0,MRI(1 + ej
0), ∀j ∈ [1,⋯, NP],

log({aj, bj}) = log({apop, bpop}) + {ζj
a, ζj

b}, ∀j ∈ [1,⋯, NP],
ej

0 ∼ 𝒩(0,σ2
V0

), ζj
a ∼ 𝒩(0,σ2

a), ζj
b ∼ 𝒩(0,σ2

b)
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Meningioma - 0D model & prediction

10
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…

Spatial mechanistic modeling for prediction of the growth of asymptomatic meningiomas. A. Collin, C. Copol, V. Pianet, T. 
Colin, J. Engelhardt, G. Kantor, H. Loiseau, O. Saut, B. Taton. Computer Methods and Programs in Biomedicine, 2021.
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Prediction based on a leave-one out 
approach: Delete the last data of one 
meningioma, learn the parameters using the 
mixed-effect approach and predict the last 
volume of the considered meningioma at 
the last time …

Spatial mechanistic modeling for prediction of the growth of asymptomatic meningiomas. A. Collin, C. Copol, V. Pianet, T. 
Colin, J. Engelhardt, G. Kantor, H. Loiseau, O. Saut, B. Taton. Computer Methods and Programs in Biomedicine, 2021.
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Meningioma - 0D model & prediction
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Proposition - The volume  of the lesion at time  verifies: 


Proof relies on Reynolds and Green theorems.

V t V(t) := ∫ℬ
T(t, x) dx = V0e

a
b (1−e−bt) .

Meningioma - 3D model & prediction

11

• Link with a 3D PDE model: tumor cell densities  & healthy cell density T S

∂t T + ∇ ⋅ ( ⃗v T ) = ae−bt T, ℬ,
S + T = 1, ℬ,
∇ ⋅ ⃗v = τG(t) T, ℬ,

⃗v = − ∇π, ℬ,
Proposition -  
• Existence & Uniqueness under assumptions

• Physical property:  under assumptions

Proof relies on the model hyperbolic properties, combined with Gagliardo-Nirenberg estimates in 
Sobolev spaces.

0 ≤ T ≤ 1

Joint state-parameter estimation for tumor growth model. A. Collin, 
T. Kritter, C. Poignard and O. Saut. SIAM JAM, 2021.

Spatial mechanistic modeling for prediction of the growth of asymptomatic meningiomas. A. Collin, C. Copol, V. Pianet, 
T. Colin, J. Engelhardt, G. Kantor, H. Loiseau, O. Saut, B. Taton. Computer Methods and Programs in Biomedicine, 2021.
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Meningioma - 3D model & prediction

12

• 0D and 3D models share the same parameters

• 3D simulations can then be done once the parameters estimated with the 0D model (with 

the prediction approach)

Spatial mechanistic modeling for prediction of the growth of asymptomatic meningiomas. A. Collin, C. Copol, V. Pianet, 
T. Colin, J. Engelhardt, G. Kantor, H. Loiseau, O. Saut, B. Taton. Computer Methods and Programs in Biomedicine, 2021.
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Intermediate conclusion and main limitation
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• Intermediate conclusion : An illustrative example of how mixed-effects models can be 
used to successfully estimate parameters and answer clinical questions


• Main limitation : it remains a challenge to increase the size of the dynamics – for 
example, when using PDE systems – with acceptable complexity costs of the algorithm


• Objective: design a population-based estimator for PDE systems based on sequential 
strategies.

Pat.2 Pat.4 Pat.7

Pat.8 Pat.9 Pat.11

Pat.18 Pat.20 Pat.22

Pat.23

MRI Segmentation

Time/space-dep. M0



Population-based estimator compatible 
for PDE systems

Joint work with 
Mélanie Prague and Philippe Moireau 



ANNABELLE COLLIN 

Maximum likelihood estimation (variational approach)

15

• Minimize the criterion with respect to the uncertainties under the constraint of the model 
dynamics


( ̂ξ, ̂ν) = argmax(log ℒT((ζ, ν); y(t1), …, y(tNT
)))

 Uncertainties (parameters / initial conditions)

 Model error

 Observations

ξ
ν
y

with

comparison between y and z

uncertainties priors

model error
• Corresponds to least-square minimisation when Gaussian laws are considered

min
ξ,ν {𝒥T(ξ, ν) =

1
2 ⟨ξ, P−1

⋄ ξ⟩ +
1
2 ∫

T

0
⟨ν(t), Q(t)−1ν(t)⟩ dt +

1
2

NT,obs

∑
k=0

⟨yk − H(z(tk)), (Wk)−1(yk − H(z(tk))⟩}
·z = F(t, z) + Bν(t)
z(0) = z0 + ξ

• Consider the augmented state (coupled the system state  and the parameters  )x θ
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with
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model error
• Corresponds to least-square minimisation when Gaussian laws are considered
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ξ,ν {𝒥T(ξ, ν) =
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2 ∫
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⟨yk − H(z(tk)), (Wk)−1(yk − H(z(tk))⟩}
·z = F(t, z) + Bν(t)
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• Consider the augmented state (coupled the system state  and the parameters  )x θ

Iterative procedures: Gradient descent method, Newton–Raphson method, Quasi-Newton 
methods (Fisher's scoring …), Expectation–maximization (EM) algorithm, Nelder-Mead algorithm, 
Monte Carlo Markov chain methods etc.

Target system
Limit system

Iteration 0

.
.
.

Iteration n

t

Target system
Limit system

Iteration 0

.
.
.

Iteration n

t

x θ
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Sequential approach

16

• Correct the dynamics by a feedback based on the discrepancy combining  the data and the 
model state 

t t

x θ
Target system
Limit system
Final estimation

Target system
Limit system
Final estimation

Target model Observer model
·z = F(t, z) + Bν(t)
z(0) = z0 + ξ

z = (x
θ)
state

parameters

· ̂z = F(t, ̂z) (+Bν(t)) + G(y − H( ̂z))
̂z(0) = z0

Parameters have a dynamics too ! 
Allow also to estimate initial conditions and model error. 

Discrepancy 

Gain operator  

D
G∥x − ̂x∥ →t→∞ 0

∥θ − ̂θ∥ →t→∞ 0
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Kalman-based filters

17

•  Kalman & Bucy (61) showed that the minimizer of the following least-square minimisation 

min
ξ,ν {𝒥T(ξ, ν) =

1
2 ⟨ξ, P−1

⋄ ξ⟩ +
1
2 ∫

T

0
⟨ν(t), Q(t)−1ν(t)⟩ dt +

1
2

NT,obs

∑
k=0

⟨yk − h(z(tk)), (Wk)−1(yk − h(z(tk))⟩}
·z = F(t, z) + Bν(t)
z(0) = z0 + ξ
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Kalman-based filters

17

•  Kalman & Bucy (61) showed that the minimizer of the following least-square minimisation 

min
ξ,ν {𝒥T(ξ, ν) =

1
2 ⟨ξ, P−1

⋄ ξ⟩ +
1
2 ∫

T

0
⟨ν(t), Q(t)−1ν(t)⟩ dt +

1
2
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∑
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⟨yk − h(z(tk)), (Wk)−1(yk − h(z(tk))⟩}
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when model and observer operators are linear verifies (time discrete version!)

Target Model 



Discrete transition operator
zk+1 = Fk+1|k zk

Observer Model 




with 

̂zk+1 = Fk+1|k ̂zk + Kk(yk − Hk ̂zk)
̂Pk+1 = Fk+1|k

̂PkFT
k+1|k − KkHk

̂Pk

Kk = PkHT
k (HkPkHT

k + W )−1

 state and parameters

 observation operator


 observations

Covariance matrices:  

 observation error

 estimation error 

z
H

y

W
P
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Kalman-based filters

17

•  Kalman & Bucy (61) showed that the minimizer of the following least-square minimisation 

min
ξ,ν {𝒥T(ξ, ν) =

1
2 ⟨ξ, P−1

⋄ ξ⟩ +
1
2 ∫

T

0
⟨ν(t), Q(t)−1ν(t)⟩ dt +

1
2

NT,obs

∑
k=0

⟨yk − h(z(tk)), (Wk)−1(yk − h(z(tk))⟩}

• If it is not linear? 

• Extended Kalman Filter (EKF): tangent operators.

• Unscented Kalman Filter (UKF): finite difference approximations based on sampling points which 

propagate the mean and covariance of a random variable,

• General nonlinear context: The Mortensen Filter*.

*A Discrete-time Optimal Filtering Approach for Non-linear Systems as a 
Stable Discretization of the Mortensen Observer. P. Moireau. ESAIM: 
Control, Optimisation and Calculus of Variations, 2018.
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Kalman-based filters
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*A Discrete-time Optimal Filtering Approach for Non-linear Systems as a 
Stable Discretization of the Mortensen Observer. P. Moireau. ESAIM: 
Control, Optimisation and Calculus of Variations, 2018.

·z = F(t, z) + Bν(t)
z(0) = z0 + ξ

• Reduced order strategy

• Prohibitive computational times due to the covariance matrix  (full matrix of size  )

• SVD decomposition:  ,  invertible matrix of small size and  extension operator. 

P Nz × Nz
P = LU−1LT U L

when model and observer operators are linear verifies (time discrete version!)

Target Model 



Discrete transition operator
zk+1 = Fk+1|k zk

Observer Model 




with 

̂zk+1 = Fk+1|k ̂zk + Kk(yk − Hk ̂zk)
̂Pk+1 = Fk+1|k

̂PkFT
k+1|k − KkHk

̂Pk

Kk = PkHT
k (HkPkHT

k + W )−1

 state and parameters

 observation operator


 observations

Covariance matrices:  

 observation error

 estimation error 

z
H

y

W
P



ANNABELLE COLLIN 

Luenberger observer

18

• Introduce a correction such that the error between the observed trajectory and the observer 
system tends to zero.


• Objective: simplest possible to avoid prohibitive additional computational times.

Target model Observer model
·z = F(t, z)
z(0) = z0 + ξ

z = (x
θ)
state

parameters

· ̂z = F(t, ̂z) + G(y − H( ̂z))
̂z(0) = z0

∥z̃∥ →t→∞ 0

Error model
·̃z = F(t, z) − F(t, ̂z) − G(H( ̂z) − H(z))
z̃(0) = ξ

Linear case ·̃z = (F − GH )z̃
z̃(0) = ξ

• Has to be adapted to each model: need theoretical proof.

• Very efficient in terms of computational times. 

• Most of the Luenberger filter are defined only for estimating the state.
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Joint state and parameter observer
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· ̂x = F(t, ̂x, ̂θ) + Gx (y − H( ̂x))
· ̂θ = Gθ (y − H( ̂x))
̂x(0) = x0

̂θ(0) = θ0

Target model

Observer model

·x = F(t, x, θ)
·θ = 0
x(0) = x0 + ξx

θ(0) = θ0 + ξθ

Luenberger observer 
(large dimension)

Kalman observer 
(small dimension)

P. Moireau, D. Chapelle,  Reduced-Order Unscented Kalman 
Filtering with Application to Parameter Identification in Large-
Dimensional Systems. COCV 2011.
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(large dimension)
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(small dimension)

Luenberger      
   

Generate  particles around the 
mean value using the covariance 

reduced to parametric space

p

Apply the stabilized model to this 
particle to compute one time step

Compute the discrepancy w.r.t the 
observations for each particle

Gather the errors the parameter 
sensitivity hence the feedback 

correction

Prediction

Innovation

Correction

Time tn

P. Moireau, D. Chapelle,  Reduced-Order Unscented Kalman 
Filtering with Application to Parameter Identification in Large-
Dimensional Systems. COCV 2011.
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Population Kalman observer
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• Objective: develop a population Kalman observer inspired from mixed effect approach.

• A population of  subjects indexed by :   

If , one can prove that the COUPLED problem can be rewritten as: 

                    

where  is an invertible matrix of dimension  defined by 

                      ,  

with . 


• The key of our uncertainty modeling is that  couples the population members.


• Through SVD on : possibility to reduce to the parametric space.

Npop i ξi = ξpop + ξ̃i

ξpop =
1

Npop

Npop

∑
i=1

ξi

min
ξ

𝒥(ξ) = [1
2 [ξ, (Ppop

0 )−1 ξ] +
1
2

NT,obs

∑
k=0

[yk − h(z(tk)), (Wk)−1(yk − h(z(tk))]]
Ppop

0 (Npop × Nz)2

Ppop
0 = ( 1

N2
pop

1⃗Npop
1⃗T

Npop
⊗ P−1

f + [INpop
−

1
Npop

1⃗Npop
1⃗T

Npop
] ⊗ P−1

m )−1

1⃗Npop
= (1 ⋯ 1)T ∈ ℝNpop

Ppop
0

Ppop
0

 A. Collin, M. Prague, and P. Moireau. Estimation for dynamical systems using a population-based 
Kalman filter–Applications in computational biology. MathematicS In Action, 2022. 

ξ =
ξ1

⋮
ξNpop

Concatenation of variables & operators

Fixed covariance Mixed covariance



Illustration of the approach

Joint work with 
Clair Poignard 

[biologists]  
Jelena Kolosnjaj, Muriel Golzio, Marie-Pierre Rols
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Concept of electroporation
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Cytoplasm

Nucleus

Reversible electroporation

Permeable 

membrane Viable cells

Applications (in oncology): 

• In vitro gene transfection 

• Electrochemotherapy 

Irreversible electroporation

Very

permeable 

membrane

Applications: 

• Tumoral ablation

• Cardiac ablation

Some open questions: 
• Accurate understanding of cell death (and especially pore formation)

• Determine the treated zone

• Better understanding of the effects of reversible electroporation to develop efficient electrochemotherapy

High voltage pulses (100 < |E| < 3000 V.cm-1) 

and short duration (~ 100 s to 100 ms)μ

Membrane 
Thickness 5nm

Permitivity 


Capacitance 

Conductance 

h ∼
ε ∼ 4.5ε0

Cm
Sm

Cell  
Radius ~ 5 to 10 m


Intra-cellular conductivity  ~ 0.5 to 1 S.m-1


Intra-cellular conductivity  ~ 1 to 1.5 S.m-1

μ
σc
σe

Death
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Data presentation & Problematic
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• Evolution of 83 3D spheroids (cell strain: HCT 116) over 250 h exposed to high intensity 
pulsed electric fields (IPBS, Toulouse).


• Measurements are made using optical instruments.

• Objective: quantify the effects of electroporation 
considering the pulses intensity

100 µm

0 V/cm 500 V/cm 1000 V/cm 2000 V/cm

Exposure to pulsed electric field at t = 0 min

Growth follow up over time following exposure to pulsed electric field  

2000 V/cm

500 V/cm

1000 V/cm

1 h 4 h 1 day 10 days

1 h 4 h 1 day 10 days

1 h 4 h 1 day 10 days

Figure 1: Bright field micrographs of multicellular spheroids followed by fluorescence microscopy
of control (0 V.cm�1), 500 V.cm�1, 1000 V.cm�1 and 2000 V.cm�1-treated spheroids, after the
application of electric pulses (N=80, t = 100 µs, ⌫= 1 Hz). Green color: green fluorescing protein
in living cells and red color: propidium iodide. Top: immediately after pulses application.
Bottom: 1h, 4h, 1 day and 10 days after pulses application.

(HCT116–GFP). Cells were grown under standard conditions (5% CO2, 37�C) in the Dul-
becco’s Modified Eagle Medium (DMEM, Gibco-Invitrogen, Carlsbad, CA, USA) containing
4.5 g/L glucose, L-Glutamine and pyruvate, 1% of penicillin/streptomycin, and 10% of fetal
bovine serum. Multicellular cell spheroids were made by seeding 500 cells per well in Costar
Corning Ultra-low attachment 96-well plates (Fisher Scientific, Illkirch, France). Plates were
kept in 5% CO2 humidified atmosphere at 37�C. Multicellular spheroids acquired a cohesive
structure and were submitted to pulsed electric field 3 days following the seeding. After the
electric exposure (detailed below), the spheroids were repositioned in ultra-low attachment
plates, in which they were kept for 10 days. Fresh medium was added to the spheroids at
a 3 to 4 days interval. Multicellular spheroids growth was monitored by fluorescence and
bright field videomicroscopy using the IncuCyte Live Cell Analysis System Microscope (Es-
sen BioScience IncuCyte™, Herts, Welwyn Garden City, UK) at a magnification multiplied
by ⇥ 10.

Electroporation was achieved following the delivery of 80 unipolar pulses at 0 V.cm�1

(control) or 500 V.cm�1 or 1000 V.cm�1 or 2000 V.cm�1, the duration of a pulse was 100 µs,
and the pulses were applied at a frequency of 1 Hz. The pulses were applied to multicellular

3
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Figure 1: Bright field micrographs of multicellular spheroids followed by fluorescence microscopy
of control (0 V.cm�1), 500 V.cm�1, 1000 V.cm�1 and 2000 V.cm�1-treated spheroids, after the
application of electric pulses (N=80, t = 100 µs, ⌫= 1 Hz). Green color: green fluorescing protein
in living cells and red color: propidium iodide. Top: immediately after pulses application.
Bottom: 1h, 4h, 1 day and 10 days after pulses application.

(HCT116–GFP). Cells were grown under standard conditions (5% CO2, 37�C) in the Dul-
becco’s Modified Eagle Medium (DMEM, Gibco-Invitrogen, Carlsbad, CA, USA) containing
4.5 g/L glucose, L-Glutamine and pyruvate, 1% of penicillin/streptomycin, and 10% of fetal
bovine serum. Multicellular cell spheroids were made by seeding 500 cells per well in Costar
Corning Ultra-low attachment 96-well plates (Fisher Scientific, Illkirch, France). Plates were
kept in 5% CO2 humidified atmosphere at 37�C. Multicellular spheroids acquired a cohesive
structure and were submitted to pulsed electric field 3 days following the seeding. After the
electric exposure (detailed below), the spheroids were repositioned in ultra-low attachment
plates, in which they were kept for 10 days. Fresh medium was added to the spheroids at
a 3 to 4 days interval. Multicellular spheroids growth was monitored by fluorescence and
bright field videomicroscopy using the IncuCyte Live Cell Analysis System Microscope (Es-
sen BioScience IncuCyte™, Herts, Welwyn Garden City, UK) at a magnification multiplied
by ⇥ 10.
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• PDE System

Proliferative cells 



Quiescent cells




Cells with a modified metabolism


 

∂t P + ∇ ⋅ ( ⃗vP) = τG(P + Q) − τPtoQP, Ω(t)

∂t Q + ∇ ⋅ ( ⃗vQ) = τPtoQP, Ω(t)

∂t F + ∇ ⋅ ( ⃗vF) = 0, Ω(t)

• Impacts of the electrical shock: 

• (1) a part of proliferative and quiescent cells is 

destroyed i.e. ,

• (2) the metabolism of a part of the cells is modified 

i.e. , for ,

• (3) the value of  appearing in the growth rate 

 increases. We denote by  the 
multiplicative value: .

R(tas) = (1 − p)R(tbs)

F(tas, x) = λ(P(tas, x) + Q(tas, x)) x ∈ Ω(tas)
a

τG(t) = ae−bt m
anew = ma

Proliferative cells
Quiescent cells
Healthy cells

Cells with a new 
metabolism

Just after the 
shock Re-growth

Dead cells

Just before the 
shock

 
(saturation hypothesis)

P + Q + F = 1, Ω(t)



ANNABELLE COLLIN 

Electroporation - Radial Equations

25

• 1D PDE System 
∂tP = − τG(r−2I − rI(t,1))∂rP + τG(1 − F)(1 − P) − τPtoQP, [0,tlast] × [0,1]

∂tF = − τG(r−2I − rI(t,1))∂rF − τG(1 − F)F, [0,tlast] × [0,1]

I = ∫
r

0
(1 − F)r2dr [0,tlast] × [0,1]

R′￼= RτGI(t,1), [0,tlast]
Q = 1 − (P + F), [0,tlast] × [0,1]

A. Collin, H. Bruhier, J. Kolosnjaj, M. Golzio, M.-P. Rols, and C. Poignard. Spatial mechanistic 
modeling for prediction of 3D multicellular spheroids behavior upon exposure to high intensity pulsed 
electric fields. AIMS Bioengineering, 9(2):102–122, 2022.

• High quiescent proportion of cells in the spheroid center:   

                                                


• Observation: 

• Objective: estimate:  (  not identifiable & fixed using the literature)


• Strategy: Joint Luenberger observer (state) & reduced Kalman-based filter (parameters)

τPtoQ = τb −
τb − τe

1 + e
(R(t)(1 − r) − d)

s

y = R
a, b, p, m, λ τb, τe, d, s
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• Luenberger observer system  
∂t

̂P = − τG(r−2 ̂I − r ̂I(t,1))∂r
̂P + τG(1 − ̂F)(1 − ̂P) − ̂τPtoQ

̂P, [0,tlast] × [0,1]

∂t
̂F = − τG(r−2 ̂I − r ̂I(t,1))∂r

̂F − τG(1 − ̂F) ̂F, [0,tlast] × [0,1]

̂I = ∫
r

0
(1 − ̂F)r2dr [0,tlast] × [0,1]

R̂′￼= R̂τG ̂I(t,1) − γ(R̂ − R), [0,tlast]

Q̂ = 1 − ( ̂P + ̂F), [0,tlast] × [0,1]

• Uncertainties reduced to the initial conditions 
R(0) = R0 + ξR, R̂(0) = R0

P(0,r) = P0 + ξP, Q(0,r) = 1 − P(0,r), F(0,r) = 0 ̂P(0) = P0, Q̂(0,r) = 1 − ̂P(0,r), ̂F(0) = 0, r ∈ [0,1]

High quiescent proportion of 
cells in the spheroid center  

 

 fixed with the literature

̂τPtoQ = τb −
τb − τe

1 + e
(R̂(t)(1 − r) − d)

s

τb, τe, d, s

Proposition - [in a well-posed context]

If , the radius  converges exponentially to 0 when  goes to .


If , the norm  converges exponentially to 0 when  

goes to .

γ >
ma
3

t ↦ (R̂ − R)(t) t +∞

γ >
ma
3

+ τe t ↦ ∥( ̂P − P)(t, ⋅ )∥2
L2(]0,1[) t

+∞
A. Collin. Population-based estimation for PDE systems – Applications in spheroids electroporation. 
Control, Optimisation and Calculus of Variations, 2023. 
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• Synthetic case (only free growth: 2 parameters  and )

• Scenario: weak priors & false initial conditions with state observer

b k = a /b

Parameters

State

 (mm)R  (at time 180 s)P (at time 0 s)P

k =
a
bb
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• Synthetic case (only free growth: 2 parameters  and )

• Scenario: weak priors & false initial conditions with state observer

b k = a /b

Parameters

State

 (mm)R  (at time 180 s)P (at time 0 s)P

k =
a
bb
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Observation Error σR = 0.08

k =
a
b

 (mm)R  (at time 90 s)P b

Sp
he

ro
id

 2
Sp

he
ro

id
 6

 (mm)R
Sph. 6
Sph. 2
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A. Collin. Population-based estimation for PDE systems – Applications 
in spheroids electroporation. COCV (minor revisions), 2023. 

True IC without state observer, 

True IC with state observer, 

False IC without state observer, 

False IC with state observer.

100

Scenario w. pr., f. IC - soError = 0.08

Figure 3.18 – Performances evaluated over 100 replicates for the 6 scenarios when �err = 0.08 (left) and
for Scenario w. pr., f. IC - so (right). First lines: rMSE (log-scale), rBIAS and COV concatenated for both
parameters b and k as a function of either the errors (left) or the number of spheroids (right) considered.
Second line: STD, ESTD and BMIXED for parameter b (k is fixed in the population) as a function of either
the errors (left) or the number of spheroids (right) considered.

Algo �x NS = 1 NS = 5 NS = 10 NS = 20 NS = 40
Algorithm [28] 0.05 0.03 0.3 1 4 12
Algorithm [28] 0.01 x x 3.5 x x
Algorithm [28] 0.001 x x 60 x x

Function nlmefitsa 0.05 x 80 x x x

Table 3.3 – Computation times given in minutes when estimating 2 parameters (b and k) in Scenario
w. pr., f. IC - so. Comparison with the Matlab function nlmefitsa average of computation times for
10 replicates).
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Observation Error σR = 0.08

 
1

Ncohort

1
Npop

Ncohort

∑
c=1

Npop

∑
i=1

0.5( |bestim
i,c − bi,c |2 + |kestim

c − kc |2 )

Mean Squared Error STD of b Mean Squared Error
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EF

 V.cm-1


( )

 V.cm-1 (B)


( )

 V.cm-1 (A)


( )

 V.cm-1


( )

500
NS = 12

1000
NS = 5

1000
NS = 6

2000
NS = 14



 (m) -  (s)

 (m) -  (s)

 (m) -  (s)

 (m) -  (s)

 (m) -  (s)

 (m) -  (s)


 (m) -  (s)

 (m) -  (s)

λ
0.37 0.035
0.22 0.092
0.36 0.045
0.37 0.012
0.69 0.04
0.77 0.10

0.92 0.0015
0.97 0.065

Algos

L+PKF* 


Nlmefitsa (SAEM) 

L+PKF* 


Nlmefitsa (SAEM) 

L+PKF* 


Nlmefitsa (SAEM) 

L+PKF* 


Nlmefitsa (SAEM)

0
0

0
0

0
0

0
0

 

 (m) -  (s)

 (m) -  (s)

 (m) -  (s)

 (m) -  (s)

 (m) -  (s)

 (m) -  (s)


 (m) -  (s)

 (m) -  (s)

p
0.10 0.0028
0.11 0.014
0.14 0.012
0.18 0.086
0.89 0.015
0.83 0.010

0.999 2 × 10−6

0.998 9 × 10−5



 (m) -  (s)


 (m) -  (s)

 (m) -  (s)

 (m) -  (s)


 (m) -  (s)

 (m) -  (s)





m
1.14 0.18

1.11 0.024
1.21 0.16
1.40 0.16
5.3 0.77
5.19 1.02

×
×

Comparing with existing strategy

31

• Computational times (min) on synthetic data

• Parameters estimation on real data

 percentage of destroyed cells

 percentage of cells whose metabolism is altered 

 growth rate increase in tumor resumption

p
λ
m

Space step








0.05
0.01
0.001
0.05










NS = 1
0.03
0.03
0.03
0.03










NS = 5
0.3

0.03
0.03
80










NS = 10
1

3.5
60

0.03










NS = 40
12

0.03
0.03
0.03

Algos

L+PKF* 

L+PKF* 

L+PKF* 


Nlmefitsa (SAEM)

0
0
0

0

* Luenberger & Population Kalman Filters



ANNABELLE COLLIN 

Electroporation - Results

32

EF = 500 V.cm-1

EF = 1000 V.cm-1

(Group B)

EF = 1000 V.cm-1

(Group A)

EF = 2000 V.cm-1

Free growth

Figure 10: Errors kV0 � V obj
0 , k � kobj , b � bobjk2 according to the number of consecutive mea-

surements (x-axis) and to the number of spheroids (y-axis). V obj
0 , kobj and bobj are estimated

using the maximum number of measurements and spheroids (top, right).

t = 0h t = 21h t = 42.1h t = 63.1h t = 84.2h t = 105h t = 126h t = 147h t = 168h t = 189h t = 210h
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t = 0h t = 21h t = 42.1h t = 63.1h t = 84.2h t = 105h t = 126h t = 147h t = 168h t = 189h t = 210h

Figure 11: Spheroid evolutions with distribution of proliferative cells. Black (resp white) = 100
(resp. 0) % of proliferative cells. Column 1: free growth, column 2: EF500, column 3: EF1000B
and column 4: EF1000A and column 5: EF2000.

16

Collin, A et al. Spatial mechanistic modeling for prediction of 3D multicellular spheroids behavior upon 
exposure to high intensity pulsed electric fields. Bioengineering 2022.
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Final conclusion
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• Strategy to combine the principle of data assimilation through joint state and parameter 
estimation with the population configuration classically considered in the formulation of 
nonlinear mixed-effects models.


• Two important methodological strategies: (1) a population-based Kalman filter and (2) a 
joint state-parameter estimation.


• Validation of a 1D PDE model for tumor spheroid electroporation with synthetic and real 
data.


• Using the state observer in conjunction with the Kalman observer for the parameters 
leads to better results when weak priors are considered and especially when the initial 
conditions are false.


