
Introduction Efficient est. from a n-sample Sketch of the proofs Num. appl. Appendices

Efficient estimation of Sobol’ indices of any order
from a single input/output sample
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Framework

Complicated function f valued in Rk depending on several
variables :

y = f (v1, . . . ,vp) ∈Rk

where

1 the inputs vi pour i = 1, . . .p are objects ;

2 f is deterministic and unknown. It is called a black-box model.
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Aim

Generally,

1 f is not analytically known ;

2 given (v1, . . . ,vp), the computer code gives y = f (v1, . . . ,vp) ;

3 computing y = f (v1, . . . ,vp) may be costly.

Wishes :

1 Evaluate y for any value of the p-uplet (v1, . . . ,vp).

2 Identify the most important variables to be able to fix the less
important ones to their nominal value.
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Probabilistic frame

In order to quantify the influence of a variable, it is common to
assume that the inputs are random :

V := (V1, . . . ,Vp) ∈ E p .

Then f : E p →Rk is a deterministic measurable function evaluable
on runs and the output code Y becomes random too :

Y = f (V1, . . . ,Vp).

Main assumptions

1 The inputs V1, . . . ,Vp ∈ E are independent.

2 The output Y is scalar with a finite second moment.
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First toy example

Let have a look on a simple example :

(V1,V2,V3) 7→Y =V1+V1V2.

Obviously,

1 Y is not depending on V3 ;

2 V1 should be more influent than V2 as it appears once alone
(term V1) and once related to V2 (term V1V2).

An input variable is influent if its variations leads to strong
variations on the output.

⇒ Build an index of influence on the variance of the output
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The so-called Sobol’ indices

Quantification of the amount of randomness that a variable or a
group of variables bring to Y => so-called Sobol’ indices.

Such indices stem from the Hoeffding decomposition of the
variance of f (or equivalently Y ) that is assumed to lie in L2.

Let u be a subset of {1, . . . ,p} and ∼u its complementary in
{1, . . . ,p} : ∼ u= {1, · · · ,p} \u.

Let denote Vu = (Vi , i ∈ u) and V∼u = (Vi , i ∈∼u).
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From Hoeffding decomposition to Sobol indices

The decomposition of the output Y gives

Y := f (V )= E[Y ]︸ ︷︷ ︸
Mean effect

+E[Y |Vu]−E[Y ]+E[Y |V∼u])−E[Y ]︸ ︷︷ ︸
First order effects

+Y − (E[Y ]+E[Y |Vu]−E[Y ]+E[Y |V∼u]−E[Y ])︸ ︷︷ ︸
Second order effects or interaction:=IA

.

Factors in the decomposition being orthogonal in L2, one may
compute the variance on both sides,

Var(Y )= Var(E[Y |Vu])+Var(E[Y |V∼u])+Var(IA).
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From Hoeffding decomposition to Sobol indices

This is the so-called Hoeffding decomposition of f . Dividing by
Var(Y ), one gets

1=Var(E[Y |Vu])

Var(Y )
+ Var(E[Y |V∼u)])

Var(Y )
+ Var(IA)

Var(Y )

:=Su+S∼u+Su,∼u ⇒ Sobol indices

T Su = Var(E[Y |Vu]))

Var(Y )
quantifies the first order effect of Vu,

while Su+Su,∼u quantifies the total effect of Vu.
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First toy example (continued)

We consider again

Y = f (V )=V1+V1V2

where V = (V1,V2,V3)∼N3(0, I3). Then(
S1,S2,S3,S1,2

)
= (1/2,0,0,1/2).
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Pick-Freeze estimation of Sobol’ indices (I)

To fix ideas assume e.g. p = 5, u= {1,2} so that ∼ u= {3,4,5}.
We consider the Pick-Freeze variable Y u defined as follows :

draw V = (V1,V2,V3,V4,V5),

build V u = (
V1,V2,V ′

3,V ′
4,V ′

5

)
.

Then, we compute

Y = f (V ),

Y u = f (V u).

A small miracle

Var(E[Y |Vu])= Cov(Y ,Y u) so that Su = Cov(Y ,Y u)

Var(Y )
.
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Pick-Freeze estimation of Sobol’ indices (II)

In practice, generate two n-samples :

one n-sample of V : (Vj)j=1,...,n,

one n-sample of V u :
(
V u
j

)
j=1,...,n

.

Compute the code on both samples :

Yj = f (Vj) for j = 1, . . . ,n,

Y u
j = f (V u

j ) for j = 1, . . . ,n.

Then estimate Su by

Su
n,PF =

1
n

∑n
j=1YjY

u
j −

(
1
n

∑n
j=1Yj

)(
1
n

∑n
j=1Y

u
j

)
1
n

∑n
j=1(Yj)2−

(
1
n

∑n
j=1Yj

)2
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Pick-Freeze scheme (III) : some statistical properties

Is the Pick-Freeze estimator of the Sobol’ index is “good”?

Is it consistent ? YES SLLN.

If yes, at which rate of convergence ? YES CLT (cv in
p
n).

Is it asymptotically efficient ? YES.

Is it possible to measure its performance for a fixed n ?
YES Berry-Esseen and/or concentration inequalities.

Ref. : A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. “ Asymptotic
normality et efficiency of a Sobol’ index estimator”, ESAIM P&S, 2013.

F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. “ Statistical

Inference for Sobol’ Pick Freeze Monte Carlo method”, Statistics, 2015.
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Drawbacks of the Pick-Freeze estimation

The cost (= number of evaluations of the function f ) of the
estimation of the p first-order Sobol’ indices is quite
expensive : (p+1)n.

This methodology is based on a particular design of
experiment that may not be available in practice. For
instance, when the practitioner only has access to real data.

T We are interested in an estimator based on a n-sample only.
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Mighty estimation based on ranks (I)
Here we assume that

the inputs Vi for i = 1, . . . ,p are scalar (dim(E )= d = 1)

and we want to estimate the Sobol’ index with respect to X =Vi :

S i = Var(E[Y |Vi ])

Var(Y )
= Var(E[Y |X ])

Var(Y )
.

To do so, we consider a n-sample of the input/output pair (X ,Y )
given by

(X1,Y1),(X2,Y2), . . . ,(Xn,Yn).

The pairs (X(1),Y(1)),(X(2),Y(2)), . . . ,(X(n),Y(n)) are rearranged in
such a way that

X(1) < . . . <X(n).
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Mighty estimation based on ranks (II)

We introduce

S i
n,Rank =

1
n

∑n−1
j=1 Y(j)Y(j+1)−

(
1
n

∑n
j=1Yj

)2
1
n

∑n
j=1Y

2
j −

(
1
n

∑n
j=1Yj

)2 .

Statistical properties - only for d = 1 and first-order Sobol’ indices
Consistency and CLT : OK.

Ref. : S. Chatterjee. “A new coefficient of Correlation”, JASA, 2020.

F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. “ Global Sensitivity

Analysis : a new generation of mighty estimators based on rank statistics”,

Bernoulli. 2022.
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Efficient estimation based on kernels

Here again we assume that the inputs Vi for i = 1, . . . ,p are scalar.

To do so, the initial n-sample is split into two samples of sizes

n1 = ⌊n/logn⌋ ⇒ estimation of the joint density of (Vi ,Y )

n2 = n−n1 ≈ n ⇒ Monte-Carlo estimation of the integral
involved in the quantity of interest.

Statistical properties - only for d = 1 and first-order Sobol’ indices
Consistency, CLT, and asymptotic efficiency : OK.

Ref. : S. Da Veiga and F. Gamboa. “Efficient estimation of sensitivity indices”,

Journal of Nonparametric Statistics, 2013.
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Estimation based on nearest neighbors

Here the input X =Vu, u⊂ {1, · · · ,p} with respect we want to
compute the Sobol’ index is allowed to have dimension d Ê 1.

To do so, the initial n-sample is split into two samples of sizes

n/2 ⇒ estim. of the regression function m(x)= E[Y |X = x ]
using the first NN of x among the points of the first sample ;

n/2 ⇒ plug-in estimator.

Statistical properties - Consistency and CLT : OK only for d É 3.

Ref. : L. Devroye, L. Györfi, G. Lugosi, and H. Walk. “A nearest neighbor

estimate of the residual variance”, EJS, 2018.
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Framework

Recall that

SX = Var(E[Y |X ])

Var(Y )
= E[E[Y |X ]2]−E[Y ]2

Var(Y )

allowing a multidimensional X =Vu with u⊂ {1, · · · ,p} :
X ∈D = [0,1]d .

T Thus we focus on the estimation of T = E[E[Y |X ]2] from the
n-sample (Xj ,Yj)j=1,...,n of the pair (X ,Y ).
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Our estimator

• Starting point : if the regression function m is known, an
asymptotically efficient estimator is (cf. Lagnoux et al. (2024))

Tn,oracle =
1

n

n∑
i=1

(2Yi −m(Xi ))m(Xi ).

• Our goal : build an estimator such that T̂n =Tn,oracle+oP(n
−1/2).

⇒ CLT/AE through CLT/AE of oracle and Slutsky’s theorem.

• Idea : a plug-in estimator of the form

T̂n = 1

n

n∑
i=1

(2Yi − m̂n(Xi ))m̂n(Xi ).

Of course, there is a lot of work to obtain the required control !
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Two main ingredients

We propose to estimate the regression function m with a
kernel-based estimator.

1 Standard Nadaraya-Watson with usual kernels is doomed by
dimensionality.

2 If inputs have compact support, kernels have known boundary
issues.
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Two main ingredients

We propose to estimate the regression function m with a
kernel-based estimator.

1 Standard Nadaraya-Watson with usual kernels is doomed by
dimensionality.

T We rely on high-order kernels with regularity assumptions on
the output.

2 If inputs have compact support, kernels have known boundary
issues.

T We leverage mirror transformations and derive new useful
convergence lemmas.
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First ingredient : high-order kernels
(Symmetric) high-order kernels in a nutshell : k : [−1,1]→R

bounded : ∥k∥∞ <∞ is a univariate kernel of order ν+1 if :

∫ 1

−1
k(u)du = 1,∫ 1

−1
uℓk(u)du = 0, for any ℓ ∈N such that 0< ℓ≤ ν∫ 1

−1
uν+1k(u)du ̸= 0.

Commonly used kernels (Gaussian, Epanechnikov,...) are of order 2.
Finally,

Kh(u)=
1

hd
K

(u
h

)= 1

hd

d∏
k=1

k
(uk
h

)
, ∀u ∈ [−1,1]d .
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First ingredient : why high-order kernels ? (I)

For kernel density estimation, bias is (multivariate Taylor)

Bias = E[f̂ (x)]− f (x)= ∑
1É|β|<ν

h|β|

β !

∂βf

∂xβ
(x)κ1,β(k)

+hν
∑

|β|=ν
κ2,β(k) as h→ 0

with the multi-index notation : β= (β1, . . . ,βd) ∈Rd+,
|β| =β1+·· ·+βd , and β!=β1! . . .βd !.

T f (= density of X in the sequel) with sufficient regularity.
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First ingredient : why high-order kernels ? (II)

For kernel density estimation, bias is (multivariate Taylor)

Bias = E[f̂ (x)]− f (x)= ∑
1É|β|<ν

h|β|

β !

∂βf

∂xβ
(x) κ1,β(k)︸ ︷︷ ︸

with a high-order kernel,
this term can cancel

+hν
∑

|β|=ν
κ2,β(k)︸ ︷︷ ︸

remainder term

as h→ 0

with the multi-index notation : β= (β1, . . . ,βd) ∈Rd+,
|β| =β1+·· ·+βd , and β!=β1! . . .βd !.
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First ingredient : why high-order kernels ? (III)

By analysing the variance (skipped here), with a high-order kernel,
we finally get

AMISE =
∫
Rd
E[(f̂ (x)− f (x))2]dx

=O(n−
2ν

2ν+d ) if h=O(n−
1

2ν+d ) (optimal bandwidth)

= o(n−
1
2 ) if ν> d/2

T kernel with high enough order.
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KDE boundary issues (I)

f̂ (x)= 1

nh

n∑
i=1

k

(
x −Xi

h

)
and

∫ ∞

−∞
f̂ (x)= 1



Introduction Efficient est. from a n-sample Sketch of the proofs Num. appl. Appendices

KDE boundary issues (II)

f̂ (x)= 1

nh

n∑
i=1

k

(
x −Xi

h

)
and

∫ 1

0
f̂ (x)< 1
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A partial solution

Doksum and Samorov (1995) estimated a truncated version of T
defined as

T trunc,ε = E[E[Y |X ]21X∈(ε,1−ε)d ].

Even if T trunc,ε→T as ε→ 0 under mild assumptions, the practical
tuning of the parameter ε depends on the unknown function f and
its choice has a large impact.

Here, we therefore focus on mirror-type kernel estimators to
estimate T rather than a truncated version of it. Such mirror-type
estimators have been proposed recently to efficiently handle
boundary effects inherent to kernel estimation.
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Second ingredient : mirror transformation (I)

f̂ (x)= 1

nh

n∑
i=1

k

(
x −Xi

h

)
and

∫ ∞

−∞
f̂ (x)= 1

T Reflect all samples around boundaries : mirror transformation
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Second ingredient : mirror transformation (II)

f̂ (x)= 1

nh

n∑
i=1

k

(
x −Xi

h

)
and

∫ ∞

−∞
f̂ (x)= 1

f̂lower(x)= 1
nh

∑n
i=1k

(
x−(−Xi )

h

)
f̂upper(x)= 1

nh

∑n
i=1k

(
x−(2−Xi )

h

)
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Second ingredient : mirror transformation (III)

f̂ (x)= 1

nh

n∑
i=1

k

(
x −Xi

h

)
and

∫ ∞

−∞
f̂ (x)= 1

f̂lower(x)= 1
nh

∑n
i=1k

(
x−(−Xi )

h

)
f̂upper(x)= 1

nh

∑n
i=1k

(
x−(2−Xi )

h

)
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Second ingredient : mirror transformation (IV)

f̂mirror(x)= f̂ (x)+ f̂lower(x)+ f̂upper(x)

f̂lower(x)= 1
nh

∑n
i=1k

(
x−(−Xi )

h

)
f̂upper(x)= 1

nh

∑n
i=1k

(
x−(2−Xi )

h

)
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Second ingredient : mirror transformation (V)

f̂mirror(x)=
(
f̂ (x)+ f̂lower(x)+ f̂upper(x)

)
×1x∈[0,1] and

∫ 1

0
f̂mirror(x)= 1

f̂lower(x)= 1
nh

∑n
i=1k

(
x−(−Xi )

h

)
f̂upper(x)= 1

nh

∑n
i=1k

(
x−(2−Xi )

h

)
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Our efficient mirrored high-order kernel-based estimate

As Pujol (2022), we consider the following 1D-transformations :

∀z ∈ [0,1], m−1(z)=−z , m0(z)= z , and m1(z)= 2−z

and, for any a ∈ {−1,0,1}d and x ∈ [0,1]d , the d-dimensional vector

Ma(x)= (ma1(x1), · · · ,mad (xd))

of mirrors in all possible directions.
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Our efficient mirrored high-order kernel-based estimate

The mirrored density estimate of the density fX of X is

f̂mirror(x)=
1

nhdn

n∑
j=1

∑
a∈{−1,0,1}d

d∏
l=1

k
(xl −Ma(Xj)l

hn

)
= 1

nhdn

n∑
j=1

∑
a∈{−1,0,1}d

K (x −Ma(Xj))

and its leave-one-out version :

f̂n,hn,i (x)=
1

nhdn

∑
j ̸=i

∑
a∈{−1,0,1}d

K (x −Ma(Xj)).
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Our efficient mirrored high-order kernel-based estimate

Similarly, the leave-one-out (mirrored) Nadaraya-Watson estimate
of the regression function is :

m̂n,hn,i (Xi )=

∑
j ̸=i

Yj

∑
a∈{−1,0,1}d

Khn

(
Xi −Ma(Xj)

)
∑
j ̸=i

∑
a∈{−1,0,1}d

Khn

(
Xi −Ma(Xj)−

) = ĝn,hn,i (Xi )

f̂n,hn,i (Xi )
.

The associated plug-in estimator then becomes :

T̂n,hn =
1

n

n∑
i=1

(2Yi − m̂n,hn,i (Xi ))m̂n,hn,i (Xi ).
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Assumptions

(A 1) Support - The support of (V1, . . . ,Vp) is [0,1]p and that of X
is [0,1]d .

(A 2) Absolute continuity - X is absolutely continuous with respect
to the Lebesgue measure on [0,1]d with density function fX
and ∃δ> 0 such that infx∈[0,1]d fX (x)Ê δ for some δ> 0.

(A 3) Bounded moments - E[Y 4]<∞ and σ2(x)= Var(Y |X = x) is
bounded on [0,1]d .

(A 4) Smoothness of fX - fX ∈C α([0,1]d) for some α> 0 and its
derivatives of order β (0<β≤ ⌊α⌋) vanish near the boundary.

(A 5) Smoothness of m - The regression function m belongs to
C α([0,1]d).

(A 6) Kernel - k : [−1,1]→R is a bounded univariate kernel of order
(ν+1) (ν= ⌊α⌋).
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Under the previous assumptions and an additional technical one,
for all i ∈ {1, · · · ,d}, we get :

bias and variance controls

∥∥E[
f̂n,hn,i

]− fX
∥∥∞ =O

(
hαn

)
,

E
[∫

[0,1]d
(f̂n,hn,i (x)− fX (x))

2dx
]= o(n−1/2),

lower control

1

infx∈[0,1]d
∣∣f̂n,hn,i (x)

∣∣ =OP(1),

when nh2dn →∞ and nh4αn → 0 as n→∞.
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Theorem (Central Limit Theorem and asymptotic efficiency)

Under the previous assumptions, one has (i)

p
n
(
T̂n,hn −E[E[Y |X ]2]

) L−−−−→
n→∞ N

(
0,Var((2Y −m(X ))m(X ))

)
as soon as α> d/2 and hn = n−γ with 1/(4α)< γ< 1/(2d) ;

(ii) T̂n,hn is asymptotically efficient to estimate E[E[Y |X ]2] from an
i.i.d. sample (Xi ,Yi )i=1,··· ,n of the pair (X ,Y ).

Ref. : S. Da Veiga, F. Gamboa, T. Klein, A. Lagnoux, C. Prieur. “Efficient

estimation of Sobol’ indices of any order from a single input/output sample.”.

Available on Hal and Arxiv (2024). https://hal.science/hal-04052837v2.

https://hal.science/hal-04052837v2
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Using the delta method, we are now able to get the asymptotic
behaviour of the estimation of SX , letting

Ŝn,hn =
T̂n,hn −

(
1
n

∑n
j=1Yj

)2
1
n

∑n
j=1Y

2
j
−

(
1
n

∑n
j=1Yj

)2 .

Corollary (CLT & AE for the estimation of the Sobol’ indices)

Under all the assumptions of the theorem, one has (i)

p
n

(
Ŝn,hn −SX

)
L−−−−→

n→∞ N (0,σ2),

where the limit variance σ2 has an explicit expression.

(ii) Ŝn,hn is asymptotically efficient to estimate SX from an i.i.d.
sample (Xi ,Yi )i=1,··· ,n of the pair (X ,Y ).
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Let us denote S i the first-order Sobol index associated to the i-th
input and its estimator Ŝ i given by :

Ŝ i
n,hn

=
T̂ i
n,hn

−
(
1
n

∑n
j=1Yj

)2
1
n

∑n
j=1Y

2
j
−

(
1
n

∑n
j=1Yj

)2 .

Corollary (CLT & AE for the global estimation of the p
first-order Sobol’ indices)

Under all the assumptions of the theorem, one has

p
n
(
(Ŝ1

n,hn
, . . . , Ŝp

n,hn
)T − (S1, . . . ,Sp)T

)
D−−−−→

n→∞ N (0,Σ),

where the limit variance Σ has an explicit expression. Furthermore,
such estimation is asymptotically efficient.
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Sketch of the proof : CLT

Following the same lines as in the proof of Theorem 2.1 in Doksum
(1995), we aim at proving that

T̂n,h =
1

n

n∑
i=1

(2Yi −m(Xi ))m(Xi )︸ ︷︷ ︸
=Tn,oracle

+oP(n−1/2). (1)

The conclusion of the theorem will then follow directly applying
the standard central limit theorem for the sum of i.i.d. random
variables to the right-hand side of the previous display together
with Slutsky’s lemma.
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Sketch of the proof : asymptotic efficiency

The influence efficient function of ψ at P, as stated in Doksum
(1995), is given by (see Klein (2024) for the details) :

ψ̃P(x ,y)= (2y −m(x))m(x)−E[Ym(X )].

Moreover, we deduce from (1) that

T̂n,h =ψ(P)+
1

n

n∑
i=1

ψ̃P(Xi ,Yi )+oP(n
−1/2)=Tn,oracle+oP(n

−1/2)

and conclude using Condition (25.22) of Van der Vaart (2000).
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For all test cases :

first-order and total-order Sobol’ indices for each input
variable Vi (i.e. X =Vi and X =V∼i resp.) ;
mirror-type estimator with an Epanechnikov kernel of order 2
and 4 (kernel bandwidth optimized via LOO on m) ;

concurrent estimators :
- PF estimator studied (Janon’12) (”PF1”)
- replicated PF estimator (Tissot’15) (”PF2”)
- rank estimator (Gamboa’20) (”Rank”) for 1st-order indices
- lag estimator (Klein’24) (”Lag”) for 1st-order indices
- nearest-neighbour estimator (Devroye 2018) (”NN”) ;

we generate a n-sample (X1,Y1), · · · ,(Xn,Yn) (except for PF) ;

each experiment is repeated 50 times with n= 500 ;

the reference value is obtained from a PF estimation with very
large sample size.
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The Bratley function

First, we consider the Bratley function defined by :

gBratley(V1, . . . ,Vp)=
p∑
i=1

(−1)i
i∏

j=1
Vj ,

with Vi ∼U ([0,1]) i.i.d. and p = 5.
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The Bratley function - first-order indices - n= 500
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The Bratley function - total-order indices - n= 500
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The g-Sobol function

We investigate the g-Sobol function defined by

gg-Sobol(V1, . . . ,Vp)=
p∏
i=1

|4Vi −2|+ai
1+ai

,

with Vi ∼U ([0,1]) i.i.d., p = 5 and a= (0,1,4.5,9,99).

Notice that it is non-differentiable at any input value with a
component equal to 0.5, but the impact on our estimator
performance is negligible for first-order indices.

Except for the degraded performance of the lag estimator, the
conclusions are the same as for the Bratley function, even for total
indices.
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The g-Sobol function - first-order indices - n= 500
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The g-Sobol function - total-order indices - n= 500
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Tuning of parameter ϵ

We illustrate numerically that the choice of the ϵ tuning parameter
of the estimator proposed in Doksum (1995) is very sensitive, thus
limiting its practical use as opposed to our mirror-type estimator.

We consider Example 3.2 from Doksum and Samarov (1995) :

Y = 1

2
+4X1+4(X2− 1

2
)2+4X

1/2
3 +τe,

with X1, X2, and X3 i.i.d. ∼U ([0,1]) and e ∼N (0,1).

We test ϵ= 10−1 and 10−3.
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Tuning of parameter ϵ
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When ϵ is equal to 10−3, the performance of both estimators are
similar. However when ϵ= 10−1, the bias of Doksum and Samarov
(1995) can be very large. Since in practice such an estimation
problem is unsupervised, the tuning of ϵ seems highly difficult and
the non-robustness of the final estimator with respect to this
parameter limits its practical use.
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Efficient influence function and asymptotic efficiency
Let P be the set of absolutely continuous probability distributions
on [0,1]d ×R and P0 ∈P be the probability distribution of (X ,Y ),
such that we can write our target T =ψ(P0) where ψ : P →R.

If ψ is differentiable at all P ∈P , the efficient influence function
ψ̃P : [0,1]d ×R→R is the gradient with smallest variance among
all gradients of ψ at P with zero mean w.r.t. to P.

The link with efficient estimators is the following : a sequence of
estimators Tn of T =ψ(P0) is asymptotically efficient iif

Tn−T =Tn−ψ(P0)= 1

n

n∑
i=1

ψ̃P0
(Xi ,Yi )+oP0

( 1p
n

)
,

See Eq.(25.22) in van der Vaart (2000).
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Efficient influence function and asymptotic efficiency

In our case, the efficient influence function at any P ∈P writes

ψ̃P(x ,y)= (2y −m(x))m(x)−ψ(P).

where m is the regression function under P : m(x)= EP [Y |X = x ],
see Klein, Lagnoux, Rochet (2024).

Then, if m under P0 is known, taking

Tn,oracle =
1

n

n∑
i=1

(2Yi −m(Xi ))m(Xi )

leads to an asymptotically efficient estimator of T .
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Plug-in estimation
A first point of view consists in seeing

T̂n = 1

n

n∑
i=1

(2Yi − m̂n(Xi ))m̂n(Xi ),

as a plug-in version of

Tn,oracle =
1

n

n∑
i=1

(2Yi −m(Xi ))m(Xi )

where the difference m− m̂n needs to be controlled to still have

T̂n =ψ(P0)+ 1

n

n∑
i=1

ψ̃P0
(Xi ,Yi )+oP0

( 1p
n

)
.
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One-step estimation

A second point of view relies on one-step estimators, that consider
a first-order bias correction of an initial estimator ψ(P̂) where P̂ is
a smoothed estimate of P0.

More precisely, a simple Taylor expansion of ψ(P0) around ψ(P̂)
involves the efficient influence function ψ̃ at P̂ :

ψ(P0)−ψ(P̂)= EP0
[ψ̃P̂ ]−

=0︷ ︸︸ ︷
EP̂ [ψ̃P̂ ]+ r2(P̂ ,P)= EP0

[ψ̃P̂ ]+ r2(P̂ ,P)

since by definition, EP [ψ̃P ]= 0 for all P. Thus, if r2(P̂ ,P)= o(1),

ψ(P̂)+EP0
[ψ̃P̂ ]∼ψ(P0).
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One-step estimation

Thus it is possible to improve ψ(P̂) by considering an estimate of
this first-order bias EP0

[ψ̃P̂ ] : for instance, EPn
[ψ̃P̂ ] where Pn is the

empirical distribution of the observations (Xi ,Yi )i=1,...,n.

In our particular case, this induces an estimator given by

T̂n =ψ(P̂)+EPn
[ψ̃P̂ ]=

1

n

n∑
i=1

(2Yi − m̂(Xi ))m̂(Xi )

where m̂ is the regression function under P̂, that is precisely a
smoothing estimate of m. We can then hope that T̂n will be
asymptotically efficient if the difference P̂ −P0 converges to 0 at
an appropriate rate.
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Construction of high-order kernels

The kernel k is typically chosen as a symmetric second-order kernel
(Epanechnikov, Gaussian, ...) with the following properties :∫

k(u)du = 1,
∫
uk(u)du = 0,

∫
u2k(u)> 0.

The terminology second-order refers to the fact that the first
non-zero moment of k is the second one (except for the zero-th
order one which ensures the kernel is normalized).
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Construction of high-order kernels

More generally, a high-order kernel of order r satisfies

∫
k(u)du = 1,

∫
ujk(u)du = 0, ∀j = 1, . . . ,r −1,

∫
urk(u)> 0.

Here, we will focus on high-order kernels with compact support,
which are used together with mirror-type transformations to avoid
boundary effects appearing when the domain is compact.

In particular, we will study symmetric kernels on [−1,1] and
non-symmetric ones on [0,1].
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Construction of high-order kernels

In order to build a kernel of order r with compact support [−1,1],
there are at least two approaches, which are described below.

Legendre orthonormal polynomials. The first construction relies on
the (normalized) Legendre orthonormal polynomials on [−1,1]
denoted by {Pm(·)}m∈N. Then we define the kernel k as

k(u)=
r+1∑
m=0

Pm(0)Pm(u)1u∈[−1,1], (2)

see Comte (2017).
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Construction of high-order kernels

High-order Epanechnikov kernel. Hansen (2005) proposes a
high-order generalization of smooth and second-order kernels on
[−1,1] including the uniform, biweight, and Epanechnikov ones.
Focusing on the latter, the kernel

k(u)=Br (u)ke(u) (3)

where ke(u)= 3
4(1−u2)1u∈[−1,1] and

Br (u)=
(3
2

)
r/2−1

(5
2

)
r/2−1

(2)r/2−1

r/2−1∑
k=0

(−1)k ( r+3
2

)
k u

2k

k!(r/2−1−k)!
(3
2

)
k

is of order r for odd r where (x)a is the Pochhammer’s symbol.
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Construction of high-order kernels

As for kernels with compact support [0,1], the two following
methods can be envisioned.

Shifted Legendre orthonormal polynomials. Similarly to the first
construction above, we can also consider the shifted Legendre
orthonormal polynomials on [0,1], denoted by {Qm(·)}m∈N, leading
to

k(u)= 2
r+1∑
m=0

Qm(0)Qm(u)1u∈[0,1]. (4)
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Construction

Dilatation. Another approach, due to Kerkyacharian (2001), relies
on dilatations of an integrable function g :R→R :

k(u)=
r∑

k=1

(
r

k

)
(−1)k+1 1

k
g

(u
k

)
. (5)

If g has support [a,b], then k has support [a,rb] and is of order r .

To obtain a kernel with support [0,1], one can for example take a
shifted Epanechnikov kernel kshift on [0,1/r ] :

kshift(u)= 6u(1− ru)r21u∈[0,1/r ].
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Numerical stability - Kernel values versus order

In what follows, we investigate numerically the high-order kernels
introduced above.

Since kernels in (2) and (4) are identical up to a shift, we only
focus on kernels as defined in (3) for [−1,1] and (4) and (5) for
[0,1].

They are coded below, note that they all take as input a parameter
h which corresponds to the kernel bandwidth.
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Numerical stability - Kernel values versus order

It appears clearly that non-symmetric kernels with support [0,1]
exhibit large variations which increase with the order, as opposed
to the symmetric kernel on [−1,1]. This implies that numerical
instabilities when computing estimators are to be expected, as
illustrated below on a simple regression case.
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Regression with mirror transformations

Now we consider a standard regression setting : we have access to
a n-sample (Xi ,Yi ) for i = 1, . . . ,n with

Yi =m(Xi )+ϵi
where the Xi ’s are i.i.d. r.v. on [0,1] and ϵi is a centred noise.

We consider regression estimators denoted by m̂1 on [0,1] and m̂2

on [−1,1] and the Bratley function.

The only parameter which needs to be tuned is the bandwidth h.

We consider a grid of evenly-spaced values on a logarithmic scale
and compute the leave-one-out mean square error for each of them.
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Regression with mirror transformations

We clearly see a very high numerical instability for the first
estimator with kernels supported on [0,1], even on a simple
regression example in dimension 1.
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