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Introduction of the problem




Plateau’s problem

Definition (Plateau’s problem)
Finding a set that minimizes its area and spans a given boundary.

Figure: Application examples : shape of soap films

Eve Machefert Approximation for Plateau’s problem SMAI 4/27



Two major approaches

@ H. Federer (1920-2010) and W. H. Fleming (1928-2023): use

oriented currents to solve Plateau’s oriented problem.
@ Variational approximation of size-mass energies for k-dimensional
currents., A. CHamsoLLE, L.A.D. Ferrari, B. MerLet, ESAIM: Control,
Optimisation and Calculus of Variations, 2019, 25 (2019).

[

Figure: Fleming and Federer
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Figure: Fleming and Federer

o E.R. Reifenberg (1928-1964): uses Cech homology to define surface
spanning a boundary.

Eve Machefert Approximation for Plateau’s problem SMAI 5/27



Phase field approximation




Steiner’s problem

Definition (Steiner’s problem)

Finding the connected set K containing the points ay, ..., a; and minimizing
the length H' (K).

E D

Figure: Steiner’s problem with 5 points (N=4)
Remark: Steiner’s problem can be seen as Plateau’s problem in lower
dimension. We connect points instead of curves and minimize length

instead of area.
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Phase field approximation

Approximation energy:

N

1 1
F.(u) := g/ |Vul?dx + — /(1 —u)?dx + — Z du(ao, aj),
Q de Jo Ce 4
i=1
where the geodesic distance between ap and a; is
dy(ag,a) = inf / luPdH’.
Y:ao—a; y

Ambrosio—Tortorelli energy controls the length.

The penalisation by geodesics insures the connectivity.

@ Approximation of length minimization problems among compact connected
sets, M. Bonnivarp, A. LEMENANT, anD F. Santameroaio, SIAM Journal on Mathematical
Analysis, 47(2), 1489-1529 (2015).
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Geodesic distance between closed curves

Definition (Geodesic distance)
The geodesic distance between two closed curves, y1 and y», is defined
by

du(y1,y2) = inf |u|2dH?,
tyr —v2 Js,

where, £ : y{ — y» means that ¢ is a smooth curve in the space of
closed curves connecting y1 and yz, and S; is the image of this curve ¢.

an

Figure: geodesic connecting points

Eve Machefert Approximation for Plateau’s problem SMAI 9/27



Geodesic distance between closed curves

Definition (Geodesic distance)
The geodesic distance between two closed curves, y1 and y», is defined
by

du(y1,y2) = inf |u|2dH?,
tyr —v2 Js,

where, £ : y{ — y» means that ¢ is a smooth curve in the space of
closed curves connecting y1 and yz, and S; is the image of this curve ¢.

an

Figure: geodesic connecting points Figure: geodesic connecting closed curves
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Approximation functional by penalisation

We define the approximation functional for Plateau’s problem

1 1

2 2

= —_ —_ J— . ). 1
F.(u) 8./0’ |[Vul|=dx + P ./c'(1 u)“dx + o ’.EJ du(yi,yp). (1)

Eve Machefert Approximation for Plateau’s problem SMAI 10/27



Approximation functional by penalisation

We define the approximation functional for Plateau’s problem

1 1

2 2

= —_ —_ J— . ). 1
F.(u) 8./0’ |[Vul|=dx + P ./c'(1 u)“dx + o ’.EJ du(yi,yp). (1)

@ xp € I': fixed pointin I".
@ yo(t) = xo : constant closed
curve

o000
[

Figure: Path connecting I" to yq
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Approximation functional by penalisation

We define the approximation functional for Plateau’s problem

1 1

2 2

= —_ —_ J— . ). 1
F.(u) 8./0’ |[Vul|=dx + P ./c'(1 u)“dx + o ’.E,j du(yi,yp). (1)

@ xp € I': fixed pointin I".

o000
- Gatog

@ yo(t) = xo : constant closed
curve

@ Penalization term for 1 closed
curve : —dy(yo,I")
Ce

Figure: Path connecting I" to yq
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Limit Problem and

['-convergence




Plateau in a cylinder

@ C: the cylinder

o I': graph of a Lipschitz function, defined on the boundary of the
cylinder 6C

De Giorgi approach in codimension 1:
Surfaces are represented as boundary of
sets and we minimize the perimeter of sets

v : instead of the area of surfaces.
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Boundary constraint

o I': radial extension of the
prescribed curve I'

o D*: setabove ['in
between cylinders

o D :setbelowIin
between cylinders

Figure: Interlocked cylinders

Surface spaning the curve I’

|

Set containing D' and not meeting D~
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Limit Problem

Definition (Competitor)

Q is a competitor if it is a set of finite perimeter that satisfies the boundary
constraint.

Definition (Plateau’s problem)

inf {P(Q, C")|Q a competitor.}

If Qg is a solution of (2) 0*Q is called the optimal surface.
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Limit Problem

Definition (Competitor)
Q is a competitor if it is a set of finite perimeter that satisfies the boundary
constraint.

Definition (Plateau’s problem)

inf {P(Q, C")|Q a competitor.}

If Qg is a solution of (2) 0*Q is called the optimal surface.

Proposition (Existence)

Plateau’s problem (2) admits solutions.
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Regularity

Theorem (M., in preparation)

Let Qy be a competitor, such that H?-a.e., 0"Qp = 0Qq. If Qg is a

minimizer of Plateau’s problem then, it is a bi-John domain with Ahlfors
regular boundary.
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Regularity

Theorem (M., in preparation)

Let Qy be a competitor, such that H?-a.e., 8*Qq = Q0. If Qg is a
minimizer of Plateau’s problem then, it is a bi-John domain with Ahlfors
regular boundary.

Remark: The regularity result remains valid in any dimension (in
co-dimension 1). Furthermore if we consider quasi-minimizers (cf David
and Semmes) instead of minimizer we have a characterization. Namely,
the converse implication is also true.

Definition (Plateau-quasi-minimizer)

A competitor Qg is called a Plateau-quasi-minimizer if there exists a
constant Q > 1 such that, for all Q competitor, we have

H2((0*Q0 \ 0°Q) N C) < QH?((8*Q\ 8*Qg) N C).
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Limsup and liminf result

Theorem (M., Bonnivard, Bretin, Lemenant, in preparation)

LetQcCa competitor for Plateau’s problem (2). Then, there exist
(ugz) € H'(C)nC(C) such that0 < u, < 1, u, =1 0onC\C’ and

limsup Fe(ug) < H2(8*°QN C).

£—0

Theorem (M., Bonnivard, Bretin, Lemenant, in preparation)

Let Q be a solution of Plateau’s problem (2). Then, for all sequences
u, € H'(C) n €°%(C) such that0 < u, < 1 andu, =1 on C\C’, we have

lim inf Fe(us) > H2(0"Q N C).
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I'-convergence type consequence

In the proof of the liminf Theorem, we constructed two competitors Q' and
Q2, as limit of level set of (u,), such that

lim inf F(ug) > %(‘Hz(a*sﬂ NC)+H?*(9*° Q2N C)).

Theorem (M., Bonnivard, Bretin, Lemenant, in preparation)

If we further assume the sequence (u;) to be quasi-minimal for F then,
the sets Q' and Q? are minimizers of Plateau’s problem (2).

Definition (Quasi-minimizing sequence for F,)

We say that a sequence u, € H'(C) n C(E) such that 0 < u, < 1 and
u, =1in C \ C’ is a quasi-minimal sequence for F if

Fe(ug) — iraf Fe(u) 0 0. (3)
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Numerical simulations




Numerical scheme for Steiner problem

We relax the geodesic distance between points :

N
1 1
Gg(u,y)zs/IVulzdx+—/(1 —u)2dx+—2/ lulPdH’,
Q 48 Q 5 i=1 Yi

where, v = (yi)1<i<n and each v; is a Lipschitz curve connecting ag to a;.

atu = _VUGE(U9 7)
y = Argminy {Gs(u, y)},
We use a time-decoupled scheme which alternates between

@ a geodesic computation using the Fast Marching Method
@ and a gradient descent to optimize in u.

@ Numerical approximation of the Steiner problem in dimension 2 and 3, M.
Bonnivarp,E. BReTIN AnD A. LEMENANT, Mathematics of Computation, 89, 1-43 (2020).
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Numerical scheme for Plateau problem

We adapt the method implemented for Steiner to Plateau’s problem.
1

& 5;[

1
Gg(u,€)=s/ |Vu|2dx+—/ (1 —u)?dx + |ul?dH?2.
C/ 48 CI

We use a time-decoupled scheme which alternates between
@ arelaxed geodesic computation using the Fast Marching Method
@ and a gradient descent to optimize in u.

o000
[

Figure: Relaxed geodesic connecting I' to yg
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Sinusoidal boundary

n =69 n =552
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Connecting two circles
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Figure: two distant circles
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Figure: two close circles
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Connecting a circle to a point on a

n=115 n =920
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Cube
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Thank you for your attention !
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Numerical scheme for the minimization of u

We want to solve VUEﬁ(u, ¢) = 0. To that aim we decompose
VUEZ (U, @) = Jimp (U, @) + Jexp (U, 9),

in which we add au to Jimp (U, ¢) and deduct from Jexp (U, ¢). So that for
big enough, Jexp is concave.

Then we get a semi-implicite scheme as follows

Jimp (U™, ) + Joxp (U, ) = 0. )

we deal with the implicite term with the Fourier transform.
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