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Introduction of the problem
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Plateau’s problem

Definition (Plateau’s problem)
Finding a set that minimizes its area and spans a given boundary.

Figure: Application examples : shape of soap films
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Two major approaches

H. Federer (1920-2010) and W. H. Fleming (1928-2023): use
oriented currents to solve Plateau’s oriented problem.

☛ Variational approximation of size-mass energies for k -dimensional
currents., A. Chambolle, L.A.D. Ferrari, B. Merlet, ESAIM: Control,
Optimisation and Calculus of Variations, 2019, 25 (2019).

Figure: Fleming and Federer

E.R. Reifenberg (1928-1964): uses Čech homology to define surface
spanning a boundary.
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Phase field approximation
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Steiner’s problem

Definition (Steiner’s problem)
Finding the connected set K containing the points a1, ..., an and minimizing
the length H1(K ).

Figure: Steiner’s problem with 5 points (N=4)

Remark: Steiner’s problem can be seen as Plateau’s problem in lower
dimension. We connect points instead of curves and minimize length
instead of area.
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Phase field approximation

Approximation energy:

F𝜀 (u) := 𝜀

∫
Ω

|∇u|2dx + 1
4𝜀

∫
Ω

(1 − u)2dx + 1
c𝜀

N∑︁
i=1

du (a0, ai),

where the geodesic distance between a0 and ai is

du (a0, ai) = inf
𝛾:a0→ai

∫
𝛾

|u|2dH1.

Ambrosio–Tortorelli energy controls the length.

The penalisation by geodesics insures the connectivity.

☛ Approximation of length minimization problems among compact connected
sets, M. Bonnivard, A. Lemenant, and F. Santambrogio, SIAM Journal on Mathematical
Analysis, 47(2), 1489-1529 (2015).
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Geodesic distance between closed curves

Definition (Geodesic distance)
The geodesic distance between two closed curves, 𝛾1 and 𝛾2, is defined
by

du (𝛾1, 𝛾2) := inf
ℓ:𝛾1 −→𝛾2

∫
Sℓ

|u|2dH2,

where, ℓ : 𝛾1 −→ 𝛾2 means that ℓ is a smooth curve in the space of
closed curves connecting 𝛾1 and 𝛾2, and Sℓ is the image of this curve ℓ.

Figure: geodesic connecting points

Figure: geodesic connecting closed curves
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Approximation functional by penalisation

We define the approximation functional for Plateau’s problem

F𝜀 (u) := 𝜀

∫
C′

|∇u|2dx + 1
4𝜀

∫
C′
(1 − u)2dx + 1

c𝜀

∑︁
i,j

du (𝛾i , 𝛾j). (1)

Figure: Path connecting Γ to 𝛾0

x0 ∈ Γ : fixed point in Γ.

𝛾0(t) = x0 : constant closed
curve

Penalization term for 1 closed
curve :

1
c𝜀

du (𝛾0, Γ)

Eve Machefert Approximation for Plateau’s problem SMAI 10 / 27



Approximation functional by penalisation

We define the approximation functional for Plateau’s problem

F𝜀 (u) := 𝜀

∫
C′

|∇u|2dx + 1
4𝜀

∫
C′
(1 − u)2dx + 1

c𝜀

∑︁
i,j

du (𝛾i , 𝛾j). (1)

Figure: Path connecting Γ to 𝛾0

x0 ∈ Γ : fixed point in Γ.

𝛾0(t) = x0 : constant closed
curve

Penalization term for 1 closed
curve :

1
c𝜀

du (𝛾0, Γ)

Eve Machefert Approximation for Plateau’s problem SMAI 10 / 27



Approximation functional by penalisation

We define the approximation functional for Plateau’s problem

F𝜀 (u) := 𝜀

∫
C′

|∇u|2dx + 1
4𝜀

∫
C′
(1 − u)2dx + 1

c𝜀

∑︁
i,j

du (𝛾i , 𝛾j). (1)

Figure: Path connecting Γ to 𝛾0

x0 ∈ Γ : fixed point in Γ.

𝛾0(t) = x0 : constant closed
curve

Penalization term for 1 closed
curve :

1
c𝜀

du (𝛾0, Γ)

Eve Machefert Approximation for Plateau’s problem SMAI 10 / 27



Limit Problem and
Γ-convergence
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Plateau in a cylinder

C: the cylinder

Γ: graph of a Lipschitz function, defined on the boundary of the
cylinder 𝜕C

De Giorgi approach in codimension 1:
Surfaces are represented as boundary of
sets and we minimize the perimeter of sets
instead of the area of surfaces.
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Boundary constraint

Figure: Interlocked cylinders

Γ̂: radial extension of the
prescribed curve Γ

D+: set above Γ̂ in
between cylinders

D−: set below Γ̂ in
between cylinders
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Limit Problem

Definition (Competitor)
Ω is a competitor if it is a set of finite perimeter that satisfies the boundary
constraint.

Definition (Plateau’s problem)

inf {P (Ω, C′) |Ω a competitor.} (2)

Remark
If Ω0 is a solution of (2) 𝜕∗Ω0 is called the optimal surface.

Proposition (Existence)

Plateau’s problem (2) admits solutions.
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Regularity

Theorem (M., in preparation)

Let Ω0 be a competitor, such that H2-a.e., 𝜕∗Ω0 = 𝜕Ω0. If Ω0 is a
minimizer of Plateau’s problem then, it is a bi-John domain with Ahlfors
regular boundary.

Remark: The regularity result remains valid in any dimension (in
co-dimension 1). Furthermore if we consider quasi-minimizers (cf David
and Semmes) instead of minimizer we have a characterization. Namely,
the converse implication is also true.

Definition (Plateau-quasi-minimizer)

A competitor Ω0 is called a Plateau-quasi-minimizer if there exists a
constant Q ⩾ 1 such that, for all Ω competitor, we have

H2((𝜕∗Ω0 \ 𝜕∗Ω) ∩ Ĉ) ⩽ QH2((𝜕∗Ω \ 𝜕∗Ω0) ∩ Ĉ).
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Limsup and liminf result

Theorem (M., Bonnivard, Bretin, Lemenant, in preparation)

Let Ω ⊂ Ĉ a competitor for Plateau’s problem (2). Then, there exist

(u𝜀) ∈ H1(Ĉ) ∩ C (Ĉ) such that 0 ⩽ u𝜀 ⩽ 1, u𝜀 = 1 on Ĉ\C′ and

lim sup
𝜀→0

F𝜀 (u𝜀) ⩽ H2(𝜕∗Ω ∩ C).

Theorem (M., Bonnivard, Bretin, Lemenant, in preparation)

Let Ω be a solution of Plateau’s problem (2). Then, for all sequences

u𝜀 ∈ H1(Ĉ) ∩ C0(Ĉ) such that 0 ⩽ u𝜀 ⩽ 1 and u𝜀 = 1 on Ĉ\C′, we have

lim inf
𝜀→0

F𝜀 (u𝜀) ⩾ H2(𝜕∗Ω ∩ C).
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Γ-convergence type consequence

In the proof of the liminf Theorem, we constructed two competitors Ω1 and
Ω2, as limit of level set of (u𝜀), such that

lim inf
𝜀→0

F𝜀 (u𝜀) ⩾
1
2
(H2(𝜕∗Ω1 ∩ C) + H2(𝜕∗Ω2 ∩ C)).

Theorem (M., Bonnivard, Bretin, Lemenant, in preparation)
If we further assume the sequence (u𝜀) to be quasi-minimal for F𝜀 then,
the sets Ω1 and Ω2 are minimizers of Plateau’s problem (2).

Definition (Quasi-minimizing sequence for F𝜀)

We say that a sequence u𝜀 ∈ H1(Ĉ) ∩ C (Ĉ) such that 0 ⩽ u𝜀 ⩽ 1 and

u𝜀 = 1 in Ĉ \ C′ is a quasi-minimal sequence for F𝜀 if

F𝜀 (u𝜀) − inf
u

F𝜀 (u) −−−−→
𝜀→0

0. (3)

Eve Machefert Approximation for Plateau’s problem SMAI 17 / 27



Numerical simulations
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Numerical scheme for Steiner problem

We relax the geodesic distance between points :

G𝜀 (u, 𝛾) = 𝜀

∫
Ω

|∇u|2dx + 1
4𝜀

∫
Ω

(1 − u)2dx + 1
c𝜀

N∑︁
i=1

∫
𝛾i

|u|2dH1,

where, 𝛾 = (𝛾i)1⩽i⩽N and each 𝛾i is a Lipschitz curve connecting a0 to ai .{
𝜕tu = −∇uG𝜀 (u, 𝛾)
𝛾 = Argmin𝛾{G𝜀 (u, 𝛾)},

We use a time-decoupled scheme which alternates between

a geodesic computation using the Fast Marching Method

and a gradient descent to optimize in u.

☛ Numerical approximation of the Steiner problem in dimension 2 and 3, M.
Bonnivard,E. Bretin and A. Lemenant, Mathematics of Computation, 89, 1-43 (2020).
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Numerical scheme for Plateau problem

We adapt the method implemented for Steiner to Plateau’s problem.

G𝜀 (u, ℓ) = 𝜀

∫
C′

|∇u|2dx + 1
4𝜀

∫
C′
(1 − u)2dx + 1

c𝜀

∫
Sℓ

|u|2dH2.

We use a time-decoupled scheme which alternates between

a relaxed geodesic computation using the Fast Marching Method

and a gradient descent to optimize in u.

Figure: Relaxed geodesic connecting Γ to 𝛾0
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Sinusoidal boundary
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Connecting two circles

Figure: two distant circles Figure: two close circles
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Connecting a circle to a point on another circle
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Cube
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Thank you for your attention !
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Numerical scheme for the minimization of u

We want to solve ∇uE2
𝜀 (u, 𝜑) = 0. To that aim we decompose

∇uE2
𝜀 (u, 𝜑) = Jimp (u, 𝜑) + Jexp (u, 𝜑),

in which we add 𝛼u to Jimp (u, 𝜑) and deduct from Jexp (u, 𝜑). So that for 𝛼
big enough, Jexp is concave.
Then we get a semi-implicite scheme as follows

Jimp (un+1, 𝜑) + Jexp (un, 𝜑) = 0.

we deal with the implicite term with the Fourier transform.
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