
12ème Biennale de la SMAI
Chance-constrained zero-sum discounted stochastic games

Lucas Osmani1, Abdel Lisser2, and Vikas Vikram Singh3

Laboratoire des signaux et systemes1,2 and Department of Mathematics IIT Delhi 3

June 2025

12ème Biennale de la SMAI June 2025 1 / 39



Table of Contents

1 Introduction

2 The model

3 Deterministic equivalent reformulation

4 The case p ≤ 0.5

5 The case p ≥ 0.5

6 Numerical results

7 Conclusion and remarks

12ème Biennale de la SMAI June 2025 2 / 39



Table of Contents

1 Introduction

2 The model

3 Deterministic equivalent reformulation

4 The case p ≤ 0.5

5 The case p ≥ 0.5

6 Numerical results

7 Conclusion and remarks

12ème Biennale de la SMAI June 2025 3 / 39



Topic of the talk

We consider zero-sum stochastic games with probabilistic rewards.

We assume that the distribution of the rewards is known to both
players.

The aim of each player is to get the maximum payoff he can
guarantee with a given probability p ∈ (0, 1), against the worst
possible move from his opponent.

The problem is formulated as a pair of chance-constrained
optimization programs.

This work is to be published in the Annals of operations’ research
(ANOR)
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The model

Finite stochastic games

A two-players zero-sum stochastic game is defined by a tuple
⟨X , (A1(x))x∈X , (A

2(x))x∈X , r , p⟩,

X is a finite state space, and A1, A2, are finite action spaces.
r is a reward function: when the game is in state x , and actions a1

and a2 are chosen, player 1 earns r(x , a1, a2) while player 2 earns
−r(x , a1, a2).

p(y |x , a1, a2) denotes a probability that game moves to state y from
x when player 1 and player 2 choose actions a1 and a2, respectively.
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The model

Controlled Markov chains

The game starts at time t = 0 from an initial state x0 which is selected
according to an initial distribution m, i.e., x0 is selected with probability
m(x0). Player 1 and player 2 choose actions a10 and a20, respectively, and
player 1 receives r(x0, a

1
0, a

2
0) and player 2 receives −r(x0, a

1
0, a

2
0). The

game moves to state x1 at time t = 1 with probability p(x1|x0, a10, a20), and
the same process repeats infinitely.
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The model

Strategies

The strategy of a player represents a sequence of decision rules according
to which actions are taken during the entire play:

General strategies are history-dependent (they depend on the previous
states and actions)
A stationary strategy of player 1 is defined by a vector f = (f (x))x∈X
where f (x) ∈ ℘(A1(x)): whenever game is at state x , player 1
chooses action a1 with probability f (x , a1).
A stationary strategy g of player 2 is similarly defined.
We denote the set of stationary strategies of player 1 and player 2 by
FS and GS
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The model

The discounted overall reward

Let Xt , A
1
t and A2

t denote state and actions of player 1 and player 2 at
time t, respectively. Future stage rewards are discounted by a factor
α ∈ [0, 1). The objective of the game is:

V (m, f , g) =
∞∑
t=0

αtEm
f ,g

(
r(Xt ,A

1
t ,A

2
t )
)
. (1)

Player 1 wants to maximize V , and player 2 wants to minimize V .
When rewards are deterministic, there exists a saddle point of V in
FS × GS , as proved by L.S. Shapley (1953).
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The probabilistic reward

We consider a random reward function
r̃(ω) = (r̃(x , a1, a2, ω))x∈X ,a1∈A1(x),a2∈A2(x)

The random overall reward

Ṽ (m, f , g , ω) =
∞∑
t=0

αtEm
f ,g

(
r̃(Xt ,A

1
t ,A

2
t , ω)

)
. (2)

The aim of each player is to get the maximum payoff, that can be
guaranteed with at least a given probability p ∈ (0, 1), against the worst
possible move from the opponent.
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Chance-constrained formulation

Objective for player 1

δ∗(p1) := max
f ∈FS ,δ∈R

δ

s.t. min
g∈GS

P(Ṽ (m, f , g) ≥ δ) ≥ p1. (P1)

Objective for player 2

η∗(p2) := min
g∈GS ,η∈R

η

s.t. min
f ∈FS

P(Ṽ (m, f , g) ≤ η) ≥ p2. (P2)
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Reward distribution

Let n =
∑

x∈X |A1(x)||A2(x)|

Elliptical rewards

r̃ ∼ Ellipn(µ,Θ, ψ) where µ is a mean vector, Θ is a positive definite
covariance matrix, and ψ is a characteristic generator, such that r̃ admits
a strictly positive density.

Let F−1(·) be a quantile function of r̃ .
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Occupation measures

The state-actions occupation measures

ρf ,gm (x , a1, a2) =
∞∑
t=0

αtPm
f ,g (Xt = x ,A1

t = a1,A2
t = a2)

The value function has the following representation:

Ṽ (m, f , g , ω) =
∑

x∈X ,a1∈A1(x),a2∈A2(x)

r̃(x , a1, a2, ω)ρf ,gm (x , a1, a2) (3)
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Deterministic equivalent reformulation

Theorem

The problem is reformulated as follows:

δ∗(p1) = max
f ∈FS

min
g∈GS

(
µ⊤ρf ,gm + F−1(1− p1)∥Θ

1
2 ρf ,gm ∥2

)
, (4)

η∗(p2) = min
g∈GS

max
f ∈FS

(
µ⊤ρf ,gm + F−1(p2)∥Θ

1
2 ρf ,gm ∥2

)
, (5)
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Deterministic equivalent reformulation

Proof.

We have Ṽ (m, f , g) = r̃⊤ρf ,gm . Define a standard normal random variable

Z = r̃⊤ρf ,gm −µ⊤ρf ,gm

∥Θ
1
2 ρf ,gm ∥2

. Then, the chance constraint of (P1) can be

reformulated as follows

P(Ṽ (m, f , g) ≥ δ) ≥ p1, ∀ g ∈ GS ,

⇐⇒ P

(
Z ≥ δ − µ⊤ρf ,gm

∥Θ
1
2 ρf ,gm ∥2

)
≥ p1, ∀ g ∈ GS ,

⇐⇒ δ ≤ min
g∈GS

µ⊤ρf ,gm + F−1(1− p1)∥Θ
1
2 ρf ,gm ∥2.

This implies that the optimal value δ∗(p1) of player 1 satisfies (4).
Similarly, the optimal cost η∗(p2) satisfies (5).
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Results when p2 ≤ 0.5

We focus on player 2, when p2 ≤ 0.5,

Parameterized stochastic games

H(λ) = min
g∈GS

max
f ∈FS

∞∑
t=0

αtEm
f ,g (ũ(Xt ,A

1
t ,A

2
t ))

= max
f ∈FS

min
g∈GS

∞∑
t=0

αtEm
f ,g (ũ(Xt ,A

1
t ,A

2
t )),

ũ is given by ũ(x , a1, a2) = µ(x , a1, a2) + F−1(p2)(Θ
1
2λ)x ,a1,a2 , and λ ∈ Rn

Theorem

η∗(p2) = min
∥λ∥2≤1

H(λ).
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Results when p2 ≤ 0.5

1 H(·) is differentiable almost everywhere, and it admits directional
derivatives

2 the minimum of H(·) lies on the sphere

Let X ∗(λ) and Y ∗(λ) denote the set of saddle points of the stochastic
game H(λ) for players 1 and 2 respectively.

Theorem

Let λ∗ be a local minimum of H(·) on the unit sphere, then for every

g ∈ Y ∗(λ∗), there exists f ∈ X ∗(λ∗), such that λ∗ = Θ
1
2 ρf ,gm

∥Θ
1
2 ρf ,gm ∥2

.
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Algorithm for p2 ≤ 0.5

Algorithm 1

1 The inner loop: solve the stochastic game H(λn) with vector λn ∈ S
2 Update λn+1 = Γ(λn)

Where Γ(λ) = Θ
1
2 ρf ,gm

∥Θ
1
2 ρf ,gm ∥2

, f ∈ X ∗(λ) and g ∈ Y ∗(λ) (We assume a unique

saddle point) .

We show how to obtain optimal strategy for player 2 given an optimal λ∗.
The convergence of this procedure is shown numerically.
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Results when p1 ≥ 0.5

We focus on player 1, when p1 ≥ 0.5. When for every x ∈ X , there exists
an action a1 ∈ A1(x) such that f (x , a1) = 1 and f (x , b) = 0 for all
b ∈ A1(x) such that b ̸= a1, we call f a pure stationary strategy. Similarly
we can define a pure stationary strategy of player 2. We denote the set of
pure stationary strategies of player 1 and player 2 by FPS and GPS ,
respectively

Theorem

δ∗(p1) = max
f ∈FS

min
g∈GPS

{
⟨µ, ρf ,gm ⟩+ F−1(1− p1)∥Θ

1
2 ρf ,gm ∥2

}
(6)

Since GPS is finite, we obtain a discrete minimax formulation.
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Nonlinear programming formulation

Let I be the index set for stationary deterministic strategies of player 2 and
(gi )i∈I denote their complete enumeration. For each i ∈ I , define a
function

ϕi (f ) = ⟨µ, ρf ,gim ⟩+ F−1(1− p1)∥Θ
1
2 ρf ,gim ∥2.

The problem is equivalently written as:

Nonlinear program

δ∗(p1) := max y (7)

s.t. (i) ϕi (f ) ≥ y , ∀ i ∈ I ,

(ii)
∑

a1∈A1(x)

f (x , a1) = 1, ∀ x ∈ X ,

(iii) f (x , a1) ≥ 0, ∀ x ∈ X , a1 ∈ A1(x).
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Ascent directions

An ascent direction d ∈ RN at a stationary policy f ∈ FS can be obtained
from an optimal solution of the following quadratic program:

Quadratic program

max
y ,d

y − 1

2
∥d∥2 (8)

s.t. y ≤ ϕi (f ) +∇ϕi (f )⊤d , ∀ i ∈ Iϵ(f ),

f (x , a1) + d(x , a1) ≥ 0, ∀ x ∈ X , a1 ∈ A1(x),∑
a∈A1(x)

d(x , a) = 0, ∀ x ∈ X .

Where Iϵ(f ) = {j ∈ I | ϕj(f ) ≤ mini∈I ϕi (f ) + ϵ}
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Algorithm

Algorithm 2

1 Find an ascent direction for the function to maximize, this is the
result of the quadratic program (8).

2 Perform a line search.
3 Update the current strategy.

This algorithm converges to a KKT point of the nonlinear program (7).
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Bilinear reformulation

Alternatively, the problem can be formulated using a standard
optimization program, including linear, bilinear, and SOCP
constraints.

This approach relies on several change of variables, into the space of
discounted occupation measures.

In practice, this problem is solved using a Gurobi solver.
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Numerical results

We make two assumptions:

The rewards do not depend on players’ actions

The reward vector is normally distributed

In the first experiment, we consider a simple example where |X | = 3 and
for every x ∈ X , |A1(x)| = |A2(x)| = 3. Let X = {x1, x2, x3}
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Numerical results
Table: Optimal solution of risk-seeking problems

p
Algorithm 2 Algorithm 1

δ∗(p) Optimal strategy Dual vector η∗(p) Optimal strategy Dual vector

0.45 -1.04958

f ∗(x1) =

1
0
0


f ∗(x2) =

0.81
0

0.19


f ∗(x3) =

0.67
0.08
0.25


λ∗ =

0.71
0.50
0.49

 -2.40466

g∗(x1) =

0
0
1


g∗(x2) =

0.47
0

0.53


g∗(x3) =

 0
0.44
0.56


λ∗ =

0.68
0.52
0.51



0.4 -0.35613

f ∗(x1) =

1
0
0


f ∗(x2) =

0.81
0

0.19


f ∗(x3) =

0.61
0.09
0.29


λ∗ =

0.71
0.50
0.50

 -3.08954

g∗(x1) =

0
0
1


g∗(x2) =

0.58
0.42
0


g∗(x3) =

 0
0.45
0.55


λ∗ =

0.69
0.51
0.51



0.3 1.15072

f ∗(x1) =

 0
0.22
0.78


f ∗(x2) =

0.78
0

0.22


f ∗(x3) =

0.49
0.11
0.40


λ∗ =

0.76
0.48
0.43

 -4.54933

g∗(x1) =

0
0
1


g∗(x2) =

0.60
0.39
0


g∗(x3) =

 0
0.47
0.53


λ∗ =

0.69
0.51
0.51
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Numerical results
Table: Optimal solution of risk-aversion problems

p
Algorithm 3 Algorithm 4

δ∗(p) Optimal strategy CPU(s) η∗(p) Optimal strategy CPU(s)

0.55 -2.41212

f ∗(x1) =

0.93
0.06
0


f ∗(x2) =

0.83
0

0.17


f ∗(x3) =

 0.19
0.21
0.601


0.71 -1.04635

g∗(x1) =

0
0
1


g∗(x2) =

0.50
0.14
0.36


g∗(x3) =

0.04
0.40
0.56


0.74

0.6 -3.09056

f ∗(x1) =

1
0
0


f ∗(x2) =

0.83
0

0.17


f ∗(x3) =

0.02
0.26
0.71


0.7 -0.35373

g∗(x1) =

0
0
1


g∗(x2) =

0.49
0.06
0.44


g∗(x3) =

0.08
0.38
0.54


0.72

0.7 -4.54958

f ∗(x1) =

1
0
0


f ∗(x2) =

0.84
0

0.16


f ∗(x3) =

 0
0.29
0.71


0.67 1.15688

g∗(x1) =

0.05
0

0.95


g∗(x2) =

0.49
0

0.51


g∗(x3) =

0.18
0.29
0.53


0.8
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Duality between risk-averse and risk-seeking players

Consider the following stochastic game:
X = {1, 2}, A1(1) = A2(1) = {1, 2}, A1(2) = A2(2) = {1}, µ(1) = 1,
µ(2) = 0. Θ = I . m = δ1, and the transition probabilities given by:

p(1 → 1, a1 = 1, a2 = 1) = 1

p(1 → 2, a1 = 1, a2 = 1) = 0

p(1 → 1, a1 = 2, a2 = 2) = 1

p(1 → 2, a1 = 2, a2 = 2) = 0

p(1 → 1, a1 = 2, a2 = 1) = 0

p(1 → 2, a1 = 2, a2 = 1) = 1

p(1 → 1, a1 = 1, a2 = 2) = 0

p(1 → 2, a1 = 1, a2 = 2) = 1
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Duality between risk-averse and risk-seeking players

We assume that player 1 is risk-averse, and denote C = −F−1(1−p1) ≥ 0.
Player 2 is risk-seeking, and p2 = 1− p1. The strategies of player 1 and 2
only depend on one number, p = f (1, 1) ∈ [0, 1] and q = g(1, 1) ∈ [0, 1].
Notice that the game is symetric (same actions for each player), and
zero-sum. Occupation measures can be computed explicitly:

γf ,g1 (1) =
+∞∑
t=0

αt(pq + (1− p)(1− q))t =
1

1− α(pq + (1− p)(1− q))

We have γf ,g1 (2) = 1
1−α − γf ,g1 (1). Take α = 0.5, and the objective is now

explicit:

δ∗ = max
p∈[0,1]

min
q∈[0,1]

1− C
√

1 + (p + q − pq)2

1− 1
2(pq + (1− p)(1− q))

(9)
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Duality between risk-averse and risk-seeking players

The bivariate function that appears in (9) does not necessarily have a
saddle point in [0, 1]× [0, 1], depending on the value of the parameter C .
In consequence, strong duality does not always hold. We can prove that
strong duality is equivalent to the optimality of the stationary strategy
class.
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Bilinear reformulation

max
y ,ρi

y (10)

s.t. (i) y ≤ µ⊤ρ̂i + F−1(1− p1)∥Θ
1
2 ρ̂i∥2, i ∈ I

(ii) ρi ∈ K gi , i ∈ I ,

(iii) ρi (x , a
1)

∑
a∈A1(x)

ρ1(x , a) = ρ1(x , a
1)

∑
a∈A1(x)

ρi (x , a), ∀ i ∈ I \ {1}

Where K gi is the occupation measure polytope, when gi a fixed pure
strategy. We compare Gurobi solver with Algorithm 2.
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Numerical experiments

Table: Comparison between Algorithm 2 and Gurobi

Example —X— A
Algorithm 3 Gurobi Duality gap (upper bound)

Objective value CPU(s) Objective value CPU(s)

1 3 2 2.9797 0.2 2.9798 0.05 4.10−2

2 3 3 -14.6838 0.9 -14.6838 10 2.10−4

3 4 2 -6.69755 0.6 -6.69754 0.07 3.10−4

4 4 3 4.74672 6.6 4.74676 7 0.1
5 4 4 2.60343 8.7 2.57851 200 5.10−2

6 5 2 -2.34345 1.7 -2.34345 0.61 1.10−3

7 5 3 -1.848352 380 -1.84834 4 1.10−2

8 5 4 -6.21586 74.6 - - -
9 6 4 -0.16407 141.7 - - -
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Conclusion and remarks

The proposed approach can be generalized, for the study of other reward
distributions, in particular α− stable ones. The continuous-time version of
this problem could be formulated in the future.
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Thank you for your attention.
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