

Evolution of a quantitative trait in a metapopulation setting: Propagation of chaos meets adaptive dynamics

Josué Tchouanti (Lifeware – Inria)

Joint work with Amaury Lambert, Hélène Leman and Hélène Morlon 12TH FRENCH BIENNAL OF APPLIED AND INDUSTRIAL MATHEMATICS

June 3, 2025

Biological motivation

Understanding the drivers of biodiversity

Study the link between Ecology and Evolution:

 \triangleright Quantitative trait distributed in a population ;

▷ Mechanisms : ○ Heredity ○ Mutations (Rares et small) ○ Selection ○ Migration (Rares)

Hofbauer&Sigmund (1990); Marrow et al. (1992); Metz et al. (1992)

Biological motivation

Understanding the drivers of biodiversity

Study the link between Ecology and Evolution:

 \triangleright Quantitative trait distributed in a population ;

▷ Mechanisms : ○ Heredity ○ Mutations (Rares et small) ○ Selection ○ Migration (Rares)

Hofbauer&Sigmund (1990); Marrow et al. (1992); Metz et al. (1992)

- Mean-field setting: complete graph, homogeneity.
- ► Large metapopulation.

How does spatial dispersion influence evolution at the local scale ?

Several scales

The model

Description

▷ K patches $(\ell = 1, ..., K)$ · N individuals per patch · The trait $x \in \mathbb{R}$ ▷ Mutation at rate $\gamma \theta(x)$, i.e $x \xrightarrow{becomes} y \sim m_{\varepsilon}(x, dy)$ ▷ Local re-sampling: y replaces x at rate c(x, y)▷ Non local re-sampling: y in ℓ' replaces x in ℓ at rate $\frac{\gamma \lambda(x, y)}{K}$

 $\gamma \rightarrow 0$ (Rare mutations and migrations) $\cdot K \rightarrow +\infty$ (Large metapopulation) $\cdot \epsilon \rightarrow 0$ (Small mutations)

The model

Description

$$\succ K \text{ patches } (\ell = 1, ..., K) \qquad \land N \text{ individuals per patch} \qquad \land \text{ The trait } x \in \mathbb{R}$$

$$\succ \text{ Mutation at rate } \gamma \theta(x), \text{ i.e } x \xrightarrow{becomes} y \sim m_{\varepsilon}(x, dy)$$

▷ Non local re-sampling: y in ℓ' replaces x in ℓ at rate $\frac{\gamma\lambda(x, y)}{K}$

Càd-làg measure valued stochastic process defined by

 \triangleright Local re-sampling: y replaces x at rate c(x, y)

$$\nu_t^{\gamma,\varepsilon,K}(\mathrm{d}r,\mathrm{d}x) = \frac{1}{K} \sum_{\ell=1}^{K} \underbrace{\frac{1}{N} \sum_{i=(\ell-1)N+1}^{\ell N} \delta_{\left(\frac{\ell}{K}, x_t^i\right)}(\mathrm{d}r,\mathrm{d}x)}_{\text{Trait distribution}\atop \text{in the }\ell-\text{th patch}} \forall t \ge 0.$$
(1)

 $\gamma \rightarrow 0$ (Rare mutations and migrations) $\cdot K \rightarrow +\infty$ (Large metapopulation) $\cdot \epsilon \rightarrow 0$ (Small mutations)

Markov property

Proposition

The stochastic process $(\nu_t^{\gamma,\varepsilon,\kappa})_{t\geq 0}$ is a $\mathcal{M}_1([0,1]\times\mathbb{R})$ -valued Markov process with infinitesimal generator given for $\phi \in \mathcal{C}_b(\mathcal{M}_1([0,1]\times\mathbb{R}))$ by

$$\begin{split} \mathcal{L}^{\gamma,\varepsilon,K}\phi(\nu) \\ &= \mathsf{N}K\gamma\int\theta(x)\nu(\mathrm{d}r,\mathrm{d}x)\int \mathsf{m}_{\varepsilon}(x,\mathrm{d}y)\left[-\phi(\nu)+\phi\left(\nu-\frac{\delta_{(r,x)}}{\mathsf{N}K}+\frac{\delta_{(r,y)}}{\mathsf{N}K}\right)\right] \\ &+\mathsf{N}K\int\nu(\mathrm{d}r,\mathrm{d}x)\left(\mathsf{N}K\int c(x,y)\mathbf{1}_{r=r'}\nu(\mathrm{d}r',\mathrm{d}y)\right)\left[-\phi(\nu)+\phi\left(\nu-\frac{\delta_{(r,x)}}{\mathsf{N}K}+\frac{\delta_{(r,y)}}{\mathsf{N}K}\right)\right] \\ &+\mathsf{N}^{2}K\gamma\int\nu(\mathrm{d}r,\mathrm{d}x)\left(\int\lambda(x,y)\mathbf{1}_{r\neq r'}\nu(\mathrm{d}r',\mathrm{d}y)\right)\left[-\phi(\nu)+\phi\left(\nu-\frac{\delta_{(r,x)}}{\mathsf{N}K}+\frac{\delta_{(r,y)}}{\mathsf{N}K}\right)\right] \end{split}$$

i.e

$$\phi(\nu_t^{\gamma,\varepsilon,K}) - \phi(\nu_0^{\gamma,\varepsilon,K}) - \int_0^t \mathcal{L}^{\gamma,\varepsilon,K} \phi(\nu_s^{\gamma,\varepsilon,K}) \mathrm{d}s, \forall t \ge 0$$

is a real-valued Martingale.

Invasion in an isolated patch ($\gamma = 0$)

Initial condition $\delta_y + (N-1)\delta_x$ with $x \neq y$

Invasion failed...

Invasion succeeded !

Invasion in an isolated patch ($\gamma = 0$)

Initial condition $\delta_y + (N-1)\delta_x$ with $x \neq y$

$$\alpha(y,x) := \mathbb{P}_{\delta_y + (N-1)\delta_x} (\text{Type } y \text{ invades the patch}) = \frac{1}{1 + \sum_{k=1}^{N-1} \left(\frac{c(y,x)}{c(x,y)}\right)^k}$$
(2)

Rare mutations/migrations regime (Heuristics)

Scaling parameters: K fixed $\cdot \varepsilon$ fixed $\cdot \gamma \ll 1$ (Rare mutations/migrations)

Scaling parameters: K fixed $\cdot \varepsilon$ fixed $\cdot \gamma \ll 1$ (Rare mutations/migrations)

Proposition (adapted from Champagnat & Lambert 2007)	
As $\gamma \to 0$, $\left(S^{1,\gamma}_{\cdot/\gamma},,S^{K,\gamma}_{\cdot/\gamma}\right)_{\gamma>0} \Longrightarrow \left(X^{1,K},,X^{K,K}\right)$	(3)
in law in $\mathbb{D}([0, T], \mathbb{R}^{K})$, Markovian pure jump process with transitions	
$(x^1,,x^{\mathcal{K}}) \xrightarrow{ ext{ becomes}} (x^1,,x^{\ell-1},y^{\ell},x^{\ell+1},,x^{\mathcal{K}}), 1 \leq \ell \leq \mathcal{K}$	(4)
at rate $\alpha(y^{\ell}, x^{\ell}) \left(N\theta(x^{\ell}) m_{\varepsilon}(x^{\ell}, \mathrm{d}y^{\ell}) + \frac{N^2}{K} \sum_{\ell'=1}^{K} \lambda(x^{\ell}, y^{\ell}) \delta_{x^{\ell'}}(\mathrm{d}y^{\ell}) \right).$	(5)

A mean-field network of TSS (II)

Scaling parameters: K fixed $\cdot \varepsilon$ fixed $\cdot \gamma \ll 1$ (Rare mutations/migrations)

Corollary

$$\left\{ \left(\nu_{t/\gamma}^{\gamma,\varepsilon,K}\right)_{t\geq 0}, \gamma>0 \right\} \xrightarrow[\gamma\to 0]{\mathcal{L}} (\nu_t^{\varepsilon,K})_{t\geq 0} \text{ in the sense of finite dimensional distributions, where }$$

$$\nu_t^{\varepsilon,K}(\mathrm{d} r,\mathrm{d} x) = \frac{1}{K}\sum_{\ell=1}^K \delta_{(\frac{\ell}{K},X_t^{\ell,K})}(\mathrm{d} r,\mathrm{d} x), \forall t \ge 0.$$

- ▷ Monomorphic patches.
- > Mean-field network of TSS
 (Gyllenberg et al. (1997)).

The limit process $(X^{1,K}, ..., X^{K,K})$ can be seen as a new Moran model where:

INDIVIDUALS: Monomorphic patches TRAITS: Dominant trait in the patches

MUTATION KERNEL:

Mutation & Fixation in the patch

Resampling rate:

Migration & Fixation in the patch

The limit process $(X^{1,K},...,X^{K,K})$ can be seen as a new Moran model where:

INDIVIDUALS: Monomorphic patches TRAITS:

Dominant trait in the patches $X_t^{\ell, K} \in \mathbb{R}$ for patch ℓ at time $t \geq 0$

MUTATION KERNEL:

Mutation & Fixation in the patch

 $N\theta(x)\alpha(y,x)m_{\varepsilon}(x,\mathrm{d}y)$

Resampling rate:

Migration & Fixation in the patch $N^2 \frac{\lambda(x,y)}{\kappa} \alpha(y,x)$

Scaling parameters: $K \gg 1$ (Large metapopulation) $\cdot \varepsilon$ fixed

Theorem (Lambert, Leman, Morlon, T., 2025+)

Assume i.i.d patches at time t = 0 with common law $\mu_0(dx)$. As $K \to +\infty$, finite families of $(X^{1,K}, ..., X^{K,K})$ with fixed size converge in law in the Skorohod space toward i.i.d copies of the pure jump process $(X_t^{\varepsilon})_{t\geq 0}$ with inhomogeneous transitions

$$x \xrightarrow{\text{becomes}} y \text{ at rate } \alpha(y, x) \left(N\theta(x) m_{\varepsilon}(x, \mathrm{d}y) + N^2 \lambda(x, y) \mu_{t-}^{\varepsilon}(\mathrm{d}y) \right)$$

$$(6)$$

where $\mu_t^{\varepsilon}(\mathrm{d} y) = \mathcal{L}(X_t^{\varepsilon} | X_0^{\varepsilon} \sim \mu_0)(\mathrm{d} y)$ for any $t \ge 0$.

Continent-Island model of population evolution (see Statkin (1977); Bürger & Akerman (2011))

- \rightsquigarrow McKean-Vlasov equation for $(X_t^{\varepsilon})_{t\geq 0}$
- \rightsquigarrow Nonlinear PDE for $(\mu_t^{\varepsilon})_{t\geq 0}$.

Small mutations regime

We start from the limit process $(X_t^{\varepsilon})_{t\geq 0}$

Scaling parameters: $\varepsilon \ll 1$ (Small mutations)

Mutation steps

Recall that $y \sim m_{\varepsilon}(x, dy)$ is equivalent to $y = x + \varepsilon z$ with $z \sim \Sigma(x, dz)$ centered.

Small mutations regime

We start from the limit process $(X_t^{arepsilon})_{t\geq 0}$

Scaling parameters: $\varepsilon \ll 1$ (Small mutations)

Mutation steps

Recall that $y \sim m_{\varepsilon}(x, dy)$ is equivalent to $y = x + \varepsilon z$ with $z \sim \Sigma(x, dz)$ centered.

The transitions of $(X_t^{\varepsilon})_{t\geq 0}$ can be rewritten

$$x \xrightarrow{\text{becomes}} \begin{cases} x + \varepsilon z & \text{at rate } N\theta(x)\alpha(x + \varepsilon z, x)\Sigma(x, \mathrm{d}z) \\ y & \text{at rate } N^2\lambda(x, y)\alpha(y, x)\mu_{t-}^{\varepsilon}(\mathrm{d}y) \end{cases}$$

Mutations are frequent but with small effects.

Small mutations regime

We start from the limit process $(X_t^{arepsilon})_{t\geq 0}$

Scaling parameters: $\varepsilon \ll 1$ (Small mutations)

Mutation steps

Recall that $y \sim m_{\varepsilon}(x, dy)$ is equivalent to $y = x + \varepsilon z$ with $z \sim \Sigma(x, dz)$ centered.

The transitions of $(X_t^{\varepsilon})_{t\geq 0}$ can be rewritten

$$x \xrightarrow{\text{becomes}} \begin{cases} x + \varepsilon z & \text{at rate } N\theta(x)\alpha(x + \varepsilon z, x)\Sigma(x, \mathrm{d}z) \\ y & \text{at rate } N^2\lambda(x, y)\alpha(y, x)\mu_{t-}^{\varepsilon}(\mathrm{d}y) \end{cases}$$

Mutations are frequent but with small effects.

▷ Either migrations are fast and then the strong spatial selection will dominate,

 \triangleright Or **migrations are slow enough** and we describe the joint effects of mutations and migrations under weak spatial selection.

Small mutations regime: No slowdown in migrations

 \triangleright Pure migration metapopulation model in the limit $\varepsilon \rightarrow 0$.

 \triangleright Spatial invasion fitness $G(y,x) = \lambda(x,y)\alpha(y,x) - \lambda(y,x)\alpha(x,y)$.

Proposition (Finite trait space)

Assume that the initial traits are $x_1, ..., x_n \in \mathbb{R}$, then $\mu_t(dx) = \sum_{k=1}^n w_k(t) \delta_{x_k}(dx)$ such that

$$\frac{\mathrm{d}w_k(t)}{\mathrm{d}t} = N^2 w_k(t) \sum_{k'=1}^n G(x_k, x_{k'}) w_{k'}(t), \forall t \ge 0.$$

$$\tag{7}$$

Small mutations regime: No slowdown in migrations

 \triangleright Pure migration metapopulation model in the limit $\varepsilon \rightarrow 0$.

 \triangleright Spatial invasion fitness $G(y,x) = \lambda(x,y)\alpha(y,x) - \lambda(y,x)\alpha(x,y)$.

Proposition (Finite trait space)

Assume that the initial traits are $x_1, ..., x_n \in \mathbb{R}$, then $\mu_t(\mathrm{d}x) = \sum_{k=1}^n w_k(t) \delta_{x_k}(\mathrm{d}x)$ such that $\frac{\mathrm{d}w_k(t)}{\mathrm{d}t} = N^2 w_k(t) \sum_{k'=1}^n G(x_k, x_{k'}) w_{k'}(t), \forall t \ge 0.$ (7)

Small mutations regime: Slowing down migrations

Scaling parameters: $\varepsilon \ll 1$ (Small mutations) · Migration rate: $\varepsilon^2 \lambda(x, y)$

The transitions of $(X_t^{\varepsilon})_{t\geq 0}$ can be rewritten

$$x \xrightarrow{\text{becomes}} \begin{cases} x + \varepsilon z & \text{at rate } N\theta(x)\alpha(x + \varepsilon z, x)\Sigma(x, \mathrm{d}z) \\ y & \text{at rate } N^2 \varepsilon^2 \lambda(x, y)\alpha(y, x)\mu_{t-}^{\varepsilon}(\mathrm{d}y) \end{cases}$$

▷ Small (resp. large) modifications are frequent (resp. rare): Use the time rescaling $t \mapsto t/\varepsilon^2$.

 \triangleright In the mutation part, selection gradually drives the evolution in the direction of most adapted traits in the environment of the resident *x*.

Small mutations regime: Slowing down migrations (CEAD)

Scaling parameters: $\varepsilon \ll 1$ (Small mutations) · Migration rate: $\varepsilon^2 \lambda(x, y)$

Theorem (Lambert, Leman, Morlon, T., 2025+)

As $\varepsilon \to 0$, $\left\{ \left(X_{t/\varepsilon^2}^{\varepsilon} \right)_{t \ge 0}, \varepsilon > 0 \right\}$ converges in law in the Skorohod space $\mathbb{D}([0, T], \mathbb{R})$ toward the unique process satisfying

$$\begin{cases} \mathrm{d}X_t = \frac{N-1}{2}\theta(X_t)\sigma^2(X_t)\partial_1\mathrm{Fit}(X_t, X_t)\mathrm{d}t + \sqrt{\theta(X_t)\sigma^2(X_t)}\mathrm{d}B_t \\ + \text{ jump rate } N^2\lambda(X_{t-}, y)\alpha(y, X_{t-})\mu_{t-}(\mathrm{d}y) \end{cases}$$

where $\mu_t(\mathrm{d} y) = \mathcal{L}(X_t | X_0 \sim \mu_0)(\mathrm{d} y)$ for any $t \ge 0$.

 $\sigma^{2}(x) = \int_{\mathbb{R}} z^{2} \Sigma(x, dz) - \text{variance of renormalized mutation steps}$ Fit $(y, x) = \log \left(\frac{c(x, y)}{c(y, x)} \right)$ - relative fitness of trait y compared to x. (CEAD)

$$\begin{cases} dX_t = \underbrace{\frac{N-1}{2}\theta(X_t)\sigma^2(X_t)\partial_1 \operatorname{Fit}(X_t, X_t)dt}_{\text{Selection}} + \underbrace{\sqrt{\theta(X_t)\sigma^2(X_t)}dB_t}_{\text{Genetic drift}} \\ + \operatorname{jump rate} \underbrace{\frac{N^2\lambda(X_{t-}, y)\alpha(y, X_{t-})\mu_{t-}(dy)}_{\text{Immigration}} \end{cases}$$

where $\mu_t(\mathrm{d} y) = \mathcal{L}(X_t | X_0 \sim \mu_0)(\mathrm{d} y)$ for $t \ge 0$.

Possible extensions to complete graphs structures and spatial heterogeneity.

Possible extensions to complete graphs structures and spatial heterogeneity.

Ongoing perspectives

- 1. Extend those results to the case of unbounded migration rates.
 - \triangleright Non explosion and moment estimates of the solutions to the McKean-Vlasov equations.
- 2. Long time behavior of the McKean-Vlasov CEAD.

▷ Gaussian distributed solutions of the Ornstein-Uhlenbeck process with non-linear jumps and their asymptotics. (see Hansen (1997); Butler & King (2004))

Thank you for your attention.

⁰A. Lambert, H. Leman, H. Morlon and J. Tchouanti. Evolution of a trait distributed over a large fragmented population: Propagation of chaos meets adaptive dynamics. Preprint https://hal.science/hal-04873740 (2025).