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Biological motivation

Understanding the drivers of biodiversity

Study the link between Ecology and Evolution:

> Quantitative trait distributed in a population ;
> Mechanisms : o Heredity o Mutations (Rares et small) o Selection o Migration (Rares)

Hofbauer & Sigmund (1990) ; Marrow et al. (1992); Metz et al. (1992)
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Biological motivation

Understanding the drivers of biodiversity

Study the link between Ecology and Evolution:

> Quantitative trait distributed in a population ;
> Mechanisms : o Heredity o Mutations (Rares et small) o Selection o Migration (Rares)

Hofbauer & Sigmund (1990) ; Marrow et al. (1992); Metz et al. (1992)

» Mean-field setting: complete graph,
homogeneity.

» Large metapopulation.

How does spatial dispersion influence evolution
at the local scale ?
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Several scales

Population size

Time scale

Microscopic model Fournier & Méléard (2()()1/
(]BM’ Stoc]msticity) (,71:11111):1g11:11 A({ ;\[AJA(:U(] (2()()7}
Assumptions:
Time acceleration - Large population
- Rare / Small mutations
\ /
Macroscopic model Long range model
(PDE, Deterministic) (TSS, Canonical equation)
Burger (2000), Raoul (2007) Metz et al. (1993), Dicckmann & Lavw (1996).
Mirrahimi & Perthame (Z{)l_)/ Champagnat et al (_)()()l 2006, 2{)/}7}
A /
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The model

Description
> K patches (¢ =1,...,K) - N individuals per patch - The trait x € R
becomes

> Mutation at rate 70(x), i.e x ————— y ~ m.(x, dy)

> Local re-sampling: y replaces x at rate c(x, y)
YA(X, y)

> Non local re-sampling: y in ¢ replaces x in £ at rate

~ — 0 (Rare mutations and migrations) - K — +oco (Large metapopulation) - £ — 0 (Small mutations)
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The model

Description
> K patches (¢ =1,...,K) - N individuals per patch - The trait x € R

becomes

> Mutation at rate 70(x), i.e x ————— y ~ m.(x, dy)

> Local re-sampling: y replaces x at rate c(x, y)
YA(X, y)

> Non local re-sampling: y in ¢ replaces x in £ at rate

Cad-lag measure valued stochastic process defined by

A
1
N > 8 y(dr, dx), Ve > 0. (1)
=1 j=(4—1)N+1

1
v =K (dr, dx) = X

™ =

Traijt distribution
in the /—th patch

~ — 0 (Rare mutations and migrations) - K — +oco (Large metapopulation) - £ — 0 (Small mutations)
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Markov property

The stochastic process (v7"=") >0 is a M1([0, 1] x R)—valued Markov process with infinitesimal

generator given for ¢ € C,(M1(]0,1] X R)) by
LK p(v)
5 r,x 5 r
= NK'y/@(X)V(dr,dx)/ms(x,dy) |:—¢(l/) +¢ <1/ - /(VK) I /(Vi?ﬂ

+ NK / y(dr,dx)(NK / c(x, y)l,:,/u(dr',dy)) [qi)(l/) +¢ (y - 5/(\;;) + 5/‘\/}?)]

4 r,x 0, r
+ MKy / v(dr, dx) ( / A(%, y) 1z (dr, dy)) [_¢>(y) +é (,, - ﬁ + /(w?ﬂ

t
S ) — By ) — /0 L75K g5 )ds, Ve > 0

is a real-valued Martingale.
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Invasion in an isolated patch (v = 0)

Initial condition 0, + (N — 1)d, with x # y

20.0 20.0

17.5 - 17.5
« «
g 15.0 § 15.0
> 125 > 125
2 — Type x 2 — Type x
5 100 — Typey 5 100 — Typey
g 7.5- g 7.5-
€ €
5 s0- S so0-
=2 =2

25- 25-

0.0- 0.0-

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5
Time Time
Invasion failed... Invasion succeeded !
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Invasion in an isolated patch (v = 0)

Initial condition 0, + (N — 1)d, with x # y

20.0 - 20.0 -
17.5- 17.5-
® 150- S50
o o
% 12.5 - % 12.5 -
£ — Type x £ — Type x
5 100 — Typey 5 100 — Typey
g 7.5- g 7.5
£ so- E 50-
=2 =2
25- 2.5
0.0 - 0.0 -
D.‘O 0‘5 1‘0 1.‘5 Z‘O 0‘.0 0‘.5 1‘0 1‘5 Z‘D 2‘5
Time Time
Invasion failed... Invasion succeeded !
. 1
oy, x) :=Ps 4 (v—1)5, (Type y invades the patch) = : (2)

N—-1 X
1+ Zk:l (zg,yi)
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Rare mutations/migrations regime (Heuristics)

Scaling parameters: K fixed - ¢ fixed - ~ < 1 (Rare mutations/migrations)
Tho o-th mutation/migraion | | The (2+1)-2h mtation/miration |
occurs ! I occurs. :
__________ b
1=~ -~ 7T~ --=° I—- -~ 7---=°
| All patches becom : | All patches become : We set for a ny ! = 1,..., K
| ‘monomorphic. | | ‘monomorphic. |

oo
4, 0,y
St K = Z Vn”\’ 1Pngt<f’n+1 ) t Z O
n=0

0,=0 Ty Pn Tnst Pnsr Timescale

o) o0
o(1ly)
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A mean-field network of TSS (1)

Scaling parameters: K fixed - ¢ fixed - = <1 (Rare mutations/migrations)

Proposition (adapted from Champagnat & Lambert 2007)

As v — 0,

1, K, K K,K
(s./j,...,s./j)w():(xl oo SO (3)

in law in D([0, T],RX), Markovian pure jump process with transitions

(x}, ..., xX) _becomes (b Xy X LX) 1< < K (4)
at rate
N2 &
oy, x%) (NG(XE)mE(XE,dyZ) t5 Z A, y9)3 o (dye)> . (5)
(=1l
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A mean-field network of TSS (I1)

Scaling parameters: K fixed - ¢ fixed - ~ < 1 (Rare mutations/migrations)

Corollary

v,e,K L K .
{(l/t/w )tZO Y > 0} 7—;()% (s )e>o in the

sense of finite dimensional distributions, where

K
1
v (dr,dx) = % Z(S(%,Xte,x)(dndx),Vt > 0.
=1

> Monomorphic patches.

> Mean-field network of TSS
(Gyllenberg et al. (1997)).
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Mean-field network of TSS <= Giant Moran model

The limit process (XK, ..., XX:K) can be seen as a new Moran model where:

INDIVIDUALS: TRAITS:
Monomorphic patches Dominant trait in the patches
MUTATION KERNEL: RESAMPLING RATE:

Mutation & Fixation in the patch Migration & Fixation in the patch
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Mean-field network of TSS <= Giant Moran model

The limit process (XK, ..., XX:K) can be seen as a new Moran model where:

INDIVIDUALS:

Monomorphic patches

K individuals

MUTATION KERNEL:
Mutation & Fixation in the patch
NO(x)a(y,x)m.(x,dy)

TRAITS:

Dominant trait in the patches
Xf’K € R for patch ¢ at time t >0

RESAMPLING RATE:

Migration & Fixation in the patch
A(x,y)

N2TQ(Y»X)
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Propagation of chaos

Scaling parameters: K >> 1 (Large metapopulation) - & fixed

Theorem (Lambert, Leman, Morlon, T., 2025+)

Assume i.i.d patches at time t = 0 with common law po(dx).
As K — +o0, finite families of (X1K, ..., X®-K) with fixed size converge in law in the Skorohod
space toward i.i.d copies of the pure jump process (X{):>o with inhomogeneous transitions

becomes

y at rate a(y, x) (N@(X)me(x7 dy) + N2A(x, y)us_ (d}/)) (6)

where pf(dy) = L(XF|X§ ~ wo)(dy) for any t > 0.

Continent-Island model of population evolution (see Statkin (1977); Biirger & Akerman (2011))

~» McKean-Vlasov equation for (X{):>o0
~> Nonlinear PDE for (1:%)¢>o0.
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Small mutations regime

We start from the limit process (X¢)¢>o

Scaling parameters: ¢ < 1 (Small mutations)

Mutation steps

Recall that y ~ m.(x,dy) is equivalent to y = x + ez with z ~ ¥(x, dz) centered.
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Scaling parameters: ¢ < 1 (Small mutations)

Mutation steps

Recall that y ~ m.(x,dy) is equivalent to y = x + ez with z ~ ¥(x, dz) centered.

The transitions of (XF)¢>0 can be rewritten

becomes | X + €z at rate NO(x)a(x + £z, x)X(x, dz)
X 2
y  at rate NX\(x, y)a(y, x)ui_(dy)

Mutations are frequent but with small effects.
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Small mutations regime

We start from the limit process (X¢)¢>o

Scaling parameters: ¢ < 1 (Small mutations)

Mutation steps

Recall that y ~ m.(x,dy) is equivalent to y = x + ez with z ~ ¥(x, dz) centered.

The transitions of (XF)¢>0 can be rewritten
becomes {X + ez at rate NO(x)a(x + ez, x)X(x,dz)
x 2D

y at rate N?°X(x, y)a(y, x)us_(dy)

Mutations are frequent but with small effects.

> Either migrations are fast and then the strong spatial selection will dominate,

> Or migrations are slow enough and we describe the joint effects of mutations and migrations
under weak spatial selection.
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Small mutations regime: No slowdown in migrations

> Pure migration metapopulation model in the limit ¢ — 0.
> Spatial invasion fitness G(y, x) = A(x, y)a(y, x) — A(y, x)a(x, y).

Proposition (Finite trait space)

Assume that the initial traits are x1, ..., x, € R, then p(dx) = >/_; wk(t)dx, (dx) such that

dv?%t(t) = N2Wk(t) z": G (XK, Xk )wi (t), Vt > 0. 7)
K'=1
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Small mutations regime: No slowdown in migrations

> Pure migration metapopulation model in the limit ¢ — 0.
> Spatial invasion fitness G(y, x) = A(x, y)a(y, x) — A(y, x)a(x, y).

Proposition (Finite trait space)

Assume that the initial traits are x1, ..., x, € R, then p(dx) = >/_; wk(t)dx, (dx) such that

de(t) <
T t) I{/Ez:l G(Xk,Xk/)Wk/(t)7Vt > 0. (7)
Five traits Five traits

0.7 - — x2=0.325

0.8-
— x4=0775

A‘A A

4\'.4

°
>

Pop. density
Pop. density
2

°
=

o

b {
'A
Time Time

There is an optimal trait G(Xopt, x) > 0 No optimal trait !

0.0-
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Small mutations regime: Slowing down migrations

Scaling parameters: € < 1 (Small mutations) - Migration rate: 2\(x, y)

The transitions of (X{):>0 can be rewritten

becomes | X + €z at rate NO(x)a(x + ez, x)X(x,dz)
2.2 €
y  at rate Nee“X\(x, y)a(y, x)ui_(dy)

> Small (resp. large) modifications are frequent (resp. rare):
Use the time rescaling t — t/<2.

> In the mutation part, selection gradually drives the evolution in the direction of most
adapted traits in the environment of the resident x.
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Small mutations regime: Slowing down migrations (CEAD)

Scaling parameters: ¢ < 1 (Small mutations) - Migration rate: 2\(x, y)

Theorem (Lambert, Leman, Morlon, T., 2025+)

Ase — 0, {(Xf/sz) o€ > 0} converges in law in the Skorohod space D([0, T],R) toward the
t=>

unique process satisfying

dX; = %9(&)02(&)8&%(&,Xt)dt + /0(X:)o2(X:)dB;

+ jump rate N°X(Xe—, y)a(y, Xe— ) e (dy)

(CEAD)

where p:(dy) = L(X¢|Xo ~ p0)(dy) for any t > 0.

o?(x) = / 7°Y(x,dz) — variance of renormalized mutation steps
JR

c
Fit(y, x) = log ( Ex’yg) — relative fitness of trait y compared to x.
c(y, x
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Structure of the McKean-Vlasov CEAD

N-—1
dX, = TG(Xt)az(Xt)alFit(Xt,Xt)dt + VO(X:)o2(X,)dB:

Selection Genetic drift

+ jump rate N2X(Xi—,y)a(y, Xe e (dy)

Immigration

where i (dy) = L(X¢|Xo ~ po)(dy) for t > 0.
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Conclusion

. McKean McKean
- et/ Mean-Field - . . o /e
ime scale t/vy rop. of chaos — ime scale t/e —
IBM Network
v K—+00 Vlasov e—0 _ Vlasov
Rare mut./migr. of TSS Large metapop. TSS Small mut., Slow migr. CEAD

Possible extensions to complete graphs structures and spatial heterogeneity.
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. McKean McKean
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IBM ————  Network
4—0 . K——+00 Vlasov e—0 ) Vlasov
of TSS Large metapop. TSS Small mut., Slow migr. CEAD

Rare mut./migr.

Possible extensions to complete graphs structures and spatial heterogeneity.

Ongoing perspectives

1. Extend those results to the case of unbounded migration rates.
> Non explosion and moment estimates of the solutions to the McKean-Vlasov equations.

2. Long time behavior of the McKean-Vlasov CEAD.
> Gaussian distributed solutions of the Ornstein-Uhlenbeck process with non-linear jumps and
their asymptotics. (see Hansen (1997); Butler & King (2004))
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Thank you for your attention.

°A. Lambert, H. Leman, H. Morlon and J. Tchouanti. Evolution of a trait distributed over a large
fragmented population: Propagation of chaos meets adaptive dynamics.
Preprint https://hal.science/hal-04873740 (2025).
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