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Overview

» Generative Modeling

= A focus on flow approaches

= Conditional Flow Matching (CFM)

= Stochasticity and Generalization in CFM

= [nductive Bias, Failure and Generalization in CFM

More details: CFM Blogpost (ICLR Blogpost track) including the CFM playground (at the bottom)


https://dl.heeere.com/cfm/

Generative Modeling
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Generative Modeling™ = Density Estimation™

Given some dataset {xz}f\il

supposed drawn i.i.d. from an unknown distribution P(X) ... or p(X) or p(X = z) or p(x)

try to recover p(X)


https://en.wikipedia.org/wiki/Generative%20Modeling
https://en.wikipedia.org/wiki/Density%20Estimation

Generative Model vs Discriminative Model

= Discriminative:
. P(Y|X)
= E.qg. classification, regression, least squares, etc.
= given an image, what is the probability that this is a picture of a cat?
» Generative:
. P(X)
= what is the likelihood of this image?
= generate a realistic image!
» Generative:
= joint, with class: P(X,Y)
= class-conditional: P(X|Y)

= NB: not the same "conditional" as in CFM



Principal Components Analysis™ (PCA)

Find an orthogonal subspace (lower dimension)

= Mmaximizing the captured variance

= i.e. minimizing the "residual variance"

e.g. latent representation z; € R®, "unprojector"” W € R1024x5
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https://en.wikipedia.org/wiki/Principal%20Components%20Analysis

Autoencoders (AE), Variational AE™ (VAE)

PCA: argming,y w >, [|l€i — W[5 ... = "Reconstruction-error" minimizer

Autoencoder (AE): A non-linear version of PCA

« replace Wz; by a trained "non-linear model Decy(2;) ... no simple projection (W7’ ) to get
{z}i

= need to estimate all {z;}; (as in any Bayesian Network) = trick: "amortize" (share the cost) by
= replacing the estimation of all {z;};
= bya z;-guesser... z; = Ency/(x;)

wehave ||z; — Wz|[3 = — log(exp(—|le; — Wz|[3) = K — A-log N'(u = Wz, 0 = 1)(ay)

PCA = Maximum Likelihood Estimator (minimizer of "constant minus log-likelihood")

VAE: A probabilistic version of non-linear PCA... z; ~ N(Encg) + priorttl (maximum a
posteriori)

2025-06-03 — Rémi Emonet — 7 / 42
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A focus on flow approaches
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Normalizing Flows
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Definition (push-forward): if  ~ py then T'(z) ~ Tupg
Normalizing flow (intuition):

= denoting pgen = Tiupo

= e.g., locally, if T' compresses the space by a factor 42, then pge,(T'(z)) = 42 - po(z)

= formally, change of variable, pgen(T'(z)) = |det(Jr1(z))| - po(x) (determinant of the jacobian
of T71)

Principle: parametrize and learn T ... so that its inverse exists (and has an easy jacobian det).



Normalizing Flows, with composed functions

P1 PK
Po /\ X1

-
o
-----

v

Learn a deep T, i.e.,

Chain rule of change of variable,

det(Jp1(z))] = H det(Jy1(

Principle: compose invertible blocks (with easy jacobian det)
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Continuous Normalizing Flows
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Pushing to the limit

= infinitely many infinitely-small steps Continuous Normalizing Flow

= making depth continuous k —t
= replacing ¢ (z) by u(z), i.e.,
u(x,t)

= easier: less constraints on u than ¢
Forward and reverse ODE

v



Continuous Normalizing Flows: visual summary

2025-06-03 — Rémi Emonet — 13/ 42 e0000



Continuous Normalizing Flows: "limitation"

The flow is unspecified!
(there is an infinity of equally good solutions)
2025-06-03 — Rémi Emonet — 14/ 42 00000
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Conditional Flow Matching (CFM) Principles

= Fully specify a probability path / velocity field / flow (like diffusion, unlike CNF)

= Use a ordinary (non-stochastic) differential equation (like CNF, unlike diffusion)
Solution ?

= introduce an arbitrary conditioning variables z

= specify the flow as an aggregation of conditional flows

Before diving into the details, let's look at one algorithm.



Typical CFM algorithm

Design choices

= conditioning variable z is a pair
= a source point, typically from AN(0,1) (but not necessarily, vs diffusion)
» a target point, typically form the (training) dataset

= conditional probability path/flow is a straight constant-velocity (0T between two points)

Algorithm
g ! 20 NN(O,I)

z1 ~ Dataset
t ~ Uniform([0,1])
r=t-z1+(1—1)-2
SGD step on 6 with loss: ||ug(x,t) — (21 — zo)Hg

That's it! (up to practical hacks and a few days of training)



CFM: Does it works? the "inversion", path un-mixing

2025-06-03 — Rémi Emonet — 20/ 42 00000



CFM: Design choices

Decide on Do , typlcally N(O, I) (but not necessarily, vs diffusion)
Decide on the conditioning variable (and its distribution), e.q.

z is a pair (xg,x1)

= 2 is atarget point x;

= 2z is a minibatch of source and target
z

is a pair, constrained by some clusters

Decide on the conditional "“flow"
= conditional probability path p:(x|z) (or p(x,t|z))
= and the associated velocity field u®"?(zx,t)

(under marginal constraints, on p(z,t))



CFM: p(x,t|z) (conditional) to p(x,t) is easy

p(x,t|z = 2V) plx,t|z = 21) plx,t|z = 2¥)

2




CFM: u®™(z,t,z) to u(z,t) is less easy

pz,t|z=29)




choice 1 choice 2

—~
VzeZ p:c]tz

determines
(by expectation over z2)

p(z|t) ¢—p

determines
explicitly

(by continuity eq. )

determines
implicitly

(by continuity eq.)

ucond(a;, t,2)

allows
computing
(Thm. 1)

u(x,t)
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CFM: Closed form expression (Theorem 1 in the blog
post)
Vt,Vx,
U*(m7t) — Ez|x,t[ucond(xvt’ Z)]

(also written as)

Vi, Ve,
N
u*(z,t) = /u“’"d(a:,t, 2)p(z|z, t) = Zuc‘md(w, t,z = x;)p(z = x;|x, t)
z i=1
(or through the bayes rule)
Vit,Va,

oy [y P@HAPE) o [u @t @, tln)] o [u (et Db, )
“(“"t)‘/z S ‘E"[ p(z,t) ]‘E[ o, t]2)p(2))



NB: CFM should only generate training points!

... but it does not, it generalizes

... yes, but why?
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Stochasticity and Generalization in CFM
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Hypothesis: Generalization through variance?

Algorithm (reminder)

2o ~ N(0,1)
z1 ~ Dataset
t ~ Uniform([0,1])
x=t-z1+ (1 —1)- 2
SGD step on 0 with loss:

lug(z,t) — (21 — 20)|I3

Maybe the noise in the target causes imperfect
learning yielding generalization?

2025-06-03 — Rémi Emonet — 30/ 42 00000



X0 = ZI z=x")

CFM has a stochastic/noisy target? % /

Cmmo belief Wht eally happen
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Histograms of cosine similarity between u«* and ucnd

The target is not so stochastic (at most times).



Beware of intuitions in small dimension
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Aligment of u* and u™  over time, for varying image dimensions d on Imagenette.

Non-stochasticity happens even earlier in high dimension.



Ruling out stochasticity: regressing against u*

SGD step on 6 with loss: ||ug(z,t) — v (z, t)||§
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FIDs (Frechet Inception Distance) across iterations, on CIFAR-10 and CelebA.

( Training with a non stochastic target yields better/faster training.

2025-06-03 — Rémi Emonet — 33 /42



- =1 Laboratoire [ | Universits NsTiTur —
lreeia— b) Hubert Curien |-:l 2oan Honnet aortiave ==

UMR = CNRS = 5516 = Saint-Etienne ParisTech

Overview

» Generative Modeling

= A focus on flow approaches

= Conditional Flow Matching (CFM)

= Stochasticity and Generalization in CFM

= [nductive Bias, Failure and Generalization in CFM

More details: CFM Blogpost (ICLR Blogpost track) including the CFM playground (at the bottom)


https://dl.heeere.com/cfm/

Inductive Bias, Failure and Generalization Iin
CFM
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CFM Works Because it Fails: comparing ug and u”*

—— # samples 10 —— # samples 1000 ——— # samples 4000

—— 4 samples 100 —— +# samples 2000 # samples 5000

—— # samples 500 —— 4 samples 3000 # samples 10000
= g 1§
5 + /)
= 3 2000 = N
S 0.5 = 2
L = 210
s 2 1000 - =
5 :
=1 0.0 I I 0)— (-

0 t 1

( Generalization comes from not estimating u* perfectly. )
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Understanding generalization: using u* then ug (CIFAR-
10)
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Understanding generalization: using u* then uy (CIFAR-
10)
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Understanding generalization: using u* then wuyg
(CelebA)
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