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Molecular dynamics

Los Alamos

Diffusion of adatoms on a surface (Courtesy of A. Voter, Los Alamos National Laboratory)
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Molecular dynamics
Molecular dynamics consists in simulating on the computer the
evolution of atomistic systems, as a numerical microscope:

• Understand the link bewteen macroscopic properties and
microscopic ingredients

• Explore matter at the atomistic scale
• Simulate new materials, new molecules
• Interpret experimental results

Applications: chemistry, biology, materials science

Molecular dynamics comes of age:

• 1/4 of CPU time worldwide is devoted to computations at the
molecular scale

• 2013 Chemistry Nobel prize: Arieh Warshel, Martin Karplus
and Michael Levitt. “Today the computer is just as important a

tool for chemists as the test tube. Simulations are so realistic that

they predict the outcome of traditional experiments.”
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Challenges
Main challenges:

• Improve models (force fields, coarse-grained force fields):
polarisability, water, chemical reactions

• Incorporate data: Bayesian approaches, data sciences

• Improve sampling methods (access long time scales):
thermodynamic quantities, and dynamical properties

Spatial parallelism is very ef-
fective, but temporal reach of
heroic brute force MD is limited
to 1µs or less.

Courtesy of Danny Perez (LANL)
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Challenges

Examples of hot topics in mathematics for MD:

• Sampling of reactive trajectories, rare event sampling (A. Guyader,

C. Hartmann, TL, C. Schuette, E. Vanden Eijnden, J. Weare, ...)

• Sampling of probability measures on manifolds, constrained
MD (P. Breiding, P. Diaconis, J. Goodman, C. Hartmann, TL, ...)

• Effective dynamics, Mori-Zwanzig (L. Delle Site, T. Hudson, F. Legoll, TL,

P. Monmarché, C. Schuette, W. Zhang, ...)

• Sampling of non equilibrium stationary state, non-reversible
dynamics (J. Bierkens, G. Stoltz, ...)

• Towards better force fields (G. Csanyi, C. Ortner, A.V. Shapeev, ...)

Today: Sampling metastable dynamics on complex energy
landscapes
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From Langevin to kinetic Monte Carlo

C.R. Schwantes, D. Shukla, V.S.Pande, Biophysical Journal, vol. 110, 2016
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Two models for dynamics

The basic modeling ingredient in molecular dynamics: a potential
function V which associates to a configuration
x = (x1, ..., xNatom

) ∈ R
d (d = 3Natom) an energy V (x) ∈ R.

From V , two kinds of dynamics are considered:

• Langevin and overdamped Langevin dynamics: Markov
processes with values in continuous state space ;

• kinetic Monte Carlo model or Markov state model (first order
kinetics): Markov processes with values in discrete state space
(jump Markov process).

Question: Can a mathematically rigorous link be made between
these two kinds of models ?
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Langevin and overdamped Langevin dynamics
Let us introduce the inverse temperature: β−1 = kBT

The Langevin dynamics write: (γ > 0 is the damping parameter)

{

dQt = M−1Pt dt

dPt = −∇V (Qt) dt − γM−1Pt dt +
√

2γβ−1dW t

We will (very often) consider the overdamped Langevin dynamics

dQt = −∇V (Qt) dt +
√

2β−1dW t

In the following X t = (Qt ,P t) ∈ R
d × R

d or X t = Qt ∈ R
d

denotes the associated Markov process

These dynamics are both ergodic wrt the canonical measure:
limt→∞

1

t

∫ t

0
ϕ(Qs)ds =

∫

Rd ϕdµ where

µ(dx) = Z−1 exp(−βV (x))dx

Main practical challenge: these dynamics are metastable
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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Metastability: a toy example

(a) V = −12.53 (b) V = −11.50 (c) V = −11.48 (d) V = −11.40

Figure: Low energy conformations of the 7 atoms Lennard-Jones cluster.

−→ simulation
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The exit event

Let us consider a domain O ⊂ R
d defined in position space. The

associated state is S = O × R
d for the Langevin dynamics and

S = O for the overdamped Langevin dynamics. The exit event
from O is given by

(τO,X τO)

where τO = inf{t > 0, Qt 6∈ O} = inf{t > 0, X t 6∈ S}

Typically, O is the basin of attraction of one of the local minima
of V for the steepest descent dynamics: ẋ = −∇V (x)

Objective: build a jump Markov model to simulate the exit event
(τO,X τO)

This is useful theoretically (justification of Markov state models and Eyring-Kramers laws)

and numerically (accelerated dynamics à la Voter)
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Kinetic Monte Carlo
Kinetic Monte Carlo (or Markov state) models are built as follows:

• define exit regions from O: ∂O = ∪J
j=1
∂Oj

• associate a rate kj with an exit through ∂Oj

and then (jump Markov model)
• the exit time τkMC

O is exponentially distributed with parameter
∑J

j=1
kj

• the exit region is I kMC
O with law P(I kMC

O = i) = ki∑J
j=1 kj

• I kMC
O and τkMC

O are independent random variables

x1

z1

z2

z3

z4

O

∂O1

∂O2

∂O3∂O4
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Energetic barriers and Eyring-Kramers laws
Formulas for transition rates. Let us introduce the local minima
(zj)j=1,...,J of V on ∂O, and associated exit regions (∂Oj )j=1,...,J .
If O is the basin of attraction of a local minimum x1, the zj ’s are
saddle points of V
The parameters kj are computed using the Eyring-Kramers formula
(Transition State Theory):

kTSTj = νj e
−β[V (zj)−V (x1)]

where νj is an explicit prefactor and x1 = argminO V

x1

z1

z2

z3

z4

O

∂O1

∂O2

∂O3∂O4
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A theoretical question

Question: can we relate the exit event (τO,X τO ) for the original
dynamics with the exit event (τkMC

O , I kMC
O ) for the jump Markov

process?

−→ Python simulations

Two steps:

• Step 1: Introduce the Quasi-Stationary Distribution
(both for overdamped Langevin and Langevin)
−→ justify the use of a kMC model

• Step 2: Consider the small temperature regime β → ∞
(only for the overdamped Langevin)
−→ justify the use of the Eyring-Kramers laws to parametrize
the kMC model
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Step 1: The Quasi-Stationary Distribution

Definition of the QSD: A probability measure ν with support S is a
QSD for the Markov process (X t)t≥0 iff for all t > 0,

X 0 ∼ ν =⇒ L(X t |τO > t) = ν

Existence, uniqueness, convergence: Assume O is bounded. For the
Langevin and the overdamped Langevin dynamics, there exists a
unique QSD ν in S. Moreover, for any X 0 in S,

lim
t→∞

L(X t |τO > t) = ν

Remark: Quantitative definition of a metastable exit:
local equilibration time ≪ exit time
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Existence of Quasi-Stationary Distributions

The QSD is the first eigenfunction of (the adjoint of) the infinitesimal
generator of the dynamics with absorbing boundary conditions [Collet,

Martinez, San Martin, 2013]: proofs rely on spectral analysis

Remarks:

• For overdamped Langevin, see [Le Bris, TL, Luskin, Perez, 2012] and [Gong,

Qian, Zhao 1988] for non-gradient forces

• For Langevin, the result is non trivial since O × R
d is

unbounded and the infinitesimal generator is hypoelliptic and
non-reversible [TL, Ramil, Reygner, 2021] [Guillin, Nectoux, Wu, 2021]

• Other approaches use Lyapunov functions and Doeblin-like
conditions [Champagnat, Villemonais, 2017-2018]
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Fundamental properties of the QSD

Assume X 0 ∼ ν, then:

• the first exit time τO is exponentially distributed since:

Pν(τO > s + t) = Pν(τO > s + t|τO > s)Pν(τO > s)

= Pν(τO > t)Pν(τO > s)

• and τO is independent of the first hitting point X τO since:

Pν(X τO ∈ A, τO > s) = Pν(X τO ∈ A|τO > s)Pν(τO > s)

= Pν(X τO ∈ A)Pν(τO > s)

Consequence: Starting from ν, the exit event from O can be exactly
written as one jump of a kinetic Monte Carlo model with rates

kj =
Pν(X τO ∈ ∂Oj )

Eν(τO)
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Step 2: The small temperature regime
We need explicit formulas for E(τO) and the distribution of X τO

Let us consider the overdamped Langevin dynamics. The first
eigenstate (λ1, u1) of the infinitesimal generator, with Dirichlet
boundary conditions on ∂O is:

{

−∇V · ∇u1 + β−1∆u1 = −λ1u1 on O

u1 = 0 on ∂O

Then, the QSD is dν = 1O(x)u1(x)e
−βV (x)dx∫

O
u1e−βV

Eν(τO) =
1

λ1

and Pν(X τO ∈ ∂Oj ) = −

∫

∂Oj
∂nu1e

−βV dσ

βλ1

∫

O u1e−βV

Thus, kj = −

∫
∂Oj

∂nu1e
−βV dσ

β
∫
O
u1e−βV . Can we then show that kj ≃ kTSTj ?
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Justifying Eyring-Kramers laws

Theorem [TL, Le Peutrec, Nectoux, 2022, to appear in JEP]

Let O be the basin of attraction of a local minimum x1 of V .
Under some geometric assumptions, starting from the QSD, in the
limit β → ∞, the exit rates for the overdamped Lang dyn are

kj = νOL
j e−β[V (zj)−V (x1)] (1 + O(β−1/2))

where

νOL
j =

|µzj |

π

√

det(∇2V )(x1)

| det(∇2V )(zj)|

with µzj the negative eigenvalue of ∇2V (zj)
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Assumptions

• V is a Morse function

• O is the basin of attraction of a local minimum x1 of V (one may

need to regularize the basin of attraction)

• Deep well: V (z1)− V (x1) > V (zJ)− V (z1)

• ∀j ∈ {1, . . . , J}, consider Bzj the basin of attraction of zj for
the dynamics ẋ = −∇TV (x) and assume that

inf
z∈Bc

zj

da(z , zj) > max(V (zJ)− V (zj),V (zj)− V (z1))

where da is the Agmon distance
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Sketch of the proof (1/2)
Main difficulty: find a precise approximation of

∫

∂Oj
∂nu1. One has

{

L(0)u1 = λ1u1 on O

u1 = 0 on ∂O

where L(0) = −β−1∆+∇V · ∇ is a self adjoint operator on
L2(e−βV ). We are interested in ∇u1 · n, and ∇u1 satisfies











L(1)∇u1 = λ1∇u1 on O

∇Tu1 = 0 on ∂O

(−β−1div +∇V ·)∇u1 = 0 on ∂O

where
L(1) = −β−1∆+∇V · ∇+ Hess(V )

Therefore ∇v1 is an eigenvector (eigen-1-form) of L(1) associated
with the small eigenvalue λ1

22 / 51



Molecular dynamics From Langevin to kMC From theory to algorithms Conclusion

Sketch of the proof (2/2)

Let π(p) be the spectral projection operator on eigenvalues of L(p)

smaller than some well-chosen constant c0
For β large, dim(Ranπ(0)) = 1 and dim(Ranπ(1)) = J [Helffer, Sjöstrand]:

Ranπ(0) = Span(u1)

Ranπ(1) = Span(ψ1, . . . , ψJ)

Since ∇u1 ∈ Ranπ(1),

∫

∂Oj

∂nu1 e
−βV =

J
∑

ℓ=1

〈∇u1, ψℓ〉L2(e−βV )

∫

∂Oj

ψℓ · n e
−βV

The proof then consists in building quasi-modes which approximate
Ranπ(0) and Ranπ(1) when β → ∞
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Eyring-Kramers formulas: quick review of other results

Global approaches:

• Analysis of the the spectrum in the small temperature regime:
potential theoretic approaches [Bovier, Klein, Landim, Miclo, Seo,...],
semiclassical analysis [Helffer, Nier, Simon, Sjöstrand,...]

• Compare kMC and (overdamped) Langevin in terms of
spectrum: Time-lagged transition operator, Koopman operator
[Schuette, Bornemann, Klus, Noe, Hartmann, Zhang, Koltai,...]

−→ No information on the exit point distribution

Local approaches: Analysis of the exit event in the small
temperature regime

• Large deviations [Freidlin, Wentzell, Day, Vanden-Eijnden, Sugiura, Weare, Touchette,

Bouchet, Reygner,...]

• PDE techniques [Borisov, Ishii, Kamin, Perthame, Souganidis, Sultanov,...]
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About large deviations

Another approach to study the exit problem from a domain: Large
deviations techniques

Compared to our approach, the assumptions in LD are much less
stringent but LD only provides the exponential rates (not the
prefactors)
(Moreover the fact that the exit time is exponentially distributed and the

independence property between exit time and exit point are only obtained

when β = ∞)

Typical result [Freidlin, Wentzell, 2012, Theorem 5.1]: ∀O′ ⊂⊂ O, ∀γ, δ > 0,
∃δ0 ∈ (0, δ], ∃β0 > 0, ∀β ≥ β0, ∀x ∈ O′ s.t. V (x) < V (z1),
∀y ∈ ∂O,

e−β[V (y)−V (z1)+γ] ≤ Px(X τO ∈ Vδ0(y)) ≤ e−β[V (y)−V (z1)−γ]
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Generalizations and perspectives
If the state is metastable, the QSD is a good intermediate between
continuous-state space dynamics and jump Markov models

The mathematical analysis gives the proper geometric setting under
which the kinetic Monte Carlo model can be built and the
Eyring-Kramers formulas can be used to parameterize it

Beyond Eyring-Kramers laws for overdamped Langevin:

• Broader geometric setting (in particular purely entropic
barriers)

• Langevin dynamics: one expects the same results with the
prefactor

νLj =
1

2π

(
√

γ2 + 4|µzj | − γ
)

√

det(∇2V )(x1)
√

| det(∇2V )(zj)|

• Non-reversible dynamics
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Energetic vs entropic trap

(work in progress [Carillo, Normand, TL, Stoltz, Vaes])

β → ∞ max
j

(rj ) → 0

x1

z1

z2 k1

k2

r1

r2

k1

k2

kj = νj e
−β[V (zj)−V (x1)]

kj = −
1

ln rj
(d = 2)

kj = rd−2

j (d > 2)
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From theory to algorithms

A.F. Voter, Annu. Rev. Mater. Res., vol. 32, 2002
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How to sample efficiently the exit event?
If the process remains sufficiently long in a state, the exit event can
be modeled by one jump of a Markov state model. This can be
used to simulate efficiently the exit event: accelerated dynamics à

la A.F. Voter

x1

z1

z2

z3

z4

O

∂O1

∂O2

∂O3∂O4

Two steps:

• Estimate the decorrelation time, namely the time to reach the
QSD

• Use the underlying jump Markov process to efficiently sample
the exit event
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Decorrelation time
How long should we wait in practice so that L(X t |τO > t) is close
to the QSD ν?

• Theoretically: exponential decay
‖L(X t |τO > t)− ν‖TV ≤ C (L(X 0)) exp (−(λ2 − λ1)t)

• Numerically: simulate L(X t |τO > t) via an interacting particle
system (Fleming-Viot particle system), and test stationarity to
estimate the convergence time to the QSD (Gelman-Rubin
convergence diagnostic)

x1

z1

z2

z3

z4

O

∂O1

∂O2

∂O3∂O4
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX
k
t = −∇V (X k

t ) dt +
√

2β−1dW
k
t

until one of them, say X 1

t , exits
2. Kill the process that exits
3. With uniform probability 1/(N − 1), randomly choose one of

the survivors, X 2

t , . . . ,X
N
t , say X 2

t

4. Branch X 2

t , with one copy persisting as X 2

t , and the other
becoming the new X 1

t

It is known that the empirical distribution [Villemonais]

µt,N ≡
1

N

N
∑

k=1

δ
X

k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < τO)
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Accelerated dyamics

Once the QSD has been reached, there are three ideas to efficiently
sample (τO,X τO):

• use parallel architectures to accelerate the sampling: Parallel
Replica, ParSplice

• raise the minimum of the potential inside the state O (but not
on ∂O): Hyperdynamics

• raise the temperature: Temperature Accelerated Dynamics
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The Parallel Replica Algorithm

Perform many independent exit events in parallel [Voter, 1998]

Two steps:

• Distribute N independent initial conditions in O according to
the QSD ν

• Evolve N replicas from these initial conditions, consider the
first exiting replica, and multiply the first exit time by the
number of replicas

O
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The Parallel Replica Algorithm

Why is it consistent?

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(τ1

O, . . . , τ
N
O )

L
= τ1

O

• Exit time is independent of exit point so that

X
I0

τ
I0
O

L
= X 1

τ1
O

where I0 = argmini (τ
i
O)

Remark: For this algorithm, one just needs two properties: τO is
exponentially distributed, and independent of the exit point X τO .
The Eyring-Kramers formulas for the exit rates are not used
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The generalized Parallel Replica algorithm

[Binder, Hédin, TL, Simpson, 2015]

1. Run a reference walker, using standard MD

2. Each time the reference walker enters a state, start a
Fleming-Viot particle process (with N replicas simulated in
parallel) with initial condition the entering point

3. If the reference walker exits before the Fleming Viot particle
process reaches stationarity go back to 1. Else go to the
parallel step

4. Parallel step: Starting from the end points of the Fleming-Viot
particle process (approximately i.i.d. with law the QSD), run
independent MD and consider the first exit event. Multiply the
first exit time by N and go back to 1, using the first exit point
as initial condition
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The generalized Parallel Replica algorithm

• The algorithm does not require a partition of the state space
but only an ensemble of states

• The time to reach the QSD is estimated each time the process
enters a new state using the Gelman-Rubin convergence
diagnostic: it depends on the state and on the initial condition
within the state
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Numerical results

We tested the generalized Parallel Replica algorithm applied to
biological systems [Hédin, TL, 2019]:

• Conformational equilibrium of the alanine dipeptide

• Dissociation of the FKBP-DMSO protein-ligand system

Main differences with materials science: definition of the states
using collective variables; the states do not define a partition; much
more rugged energy landscapes

Implementation within OpenMM, see
https://gitlab.inria.fr/parallel-replica

37 / 51



Molecular dynamics From Langevin to kMC From theory to algorithms Conclusion

FKBP-DMSO: the model (1/4)

FKBP-DMSO complex,
corresponding to the RCSB-PDB entry “1D7H”
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FKBP-DMSO: the model (2/4)

DMSO in its binding cavity Distances used to define the cavity
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FKBP-DMSO: accuracy of ParRep (3/4)

Cumulative distribution function of the dissociation times
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FKBP-DMSO: parallel efficiency (4/4)

TOL Speed (ns/day) Eff. speedup (Eff./Max)

0.05 493.4 95.8 68.4%
0.025 496.8 96.5 68.9%
0.01 409.4 79.5 56.8%

Effective speed-up as a function of the tolerance, for N = 140
replicas run in parallel (speed of a reference Langevin dynamics is
5.15 ns/day)
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The Parallel Trajectory Splicing algorithm

Precompute the exit events [Perez, Cubuk, Waterland, Kaxiras, Voter, 2015]

Algorithm:

• Simulate in parallel short trajectories which start from the
QSD in a state, and end at the QSD in a state

• Glue together these short trajectories to build the full dynamics
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Hyperdynamics (1/2)

Raise the potential in O to reduce the exit time [Voter, 1997]

Two steps:

• Equilibrate on the biased potential V + δV

• Wait for an exit and multiply the exit time τ δVO by the boost

factor B = 1

τδV
O

∫ τδV
O

0
exp(β δV (X t)) dt

x1

z1

z2

z3

z4

O

∂O1

∂O2

∂O3∂O4
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Hyperdynamics (2/2)
Why is it consistent ?

Assumptions on δV : (i) δV = 0 on ∂O and (ii) δV is sufficiently
small so that the Theorem above applies on V and V + δV

Recall the formula for the exit rates:

kj = νOL
j e−β[V (zj )−V (x1)] (1 + O(β−1))

where νOL
j =

|µzj
|

π

√

det(∇2V )(x1)
| det(∇2V )(zj )|

Thus kj/
∑J

ℓ=1
kℓ is independent of δV and

∑J
ℓ=1

kℓ(V + δV )
∑J

ℓ=1
kℓ(V )

=

√

det(∇2(V + δV ))(x1)

det(∇2(V ))(x1)
eβδV (x1)(1 + O(β−1))

=

∫

O exp(−βV )
∫

O exp(−β(V + δV ))
(1 + O(β−1)) ≃ B
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Temperature Accelerated Dynamics (1/2)

Increase the temperature to reduce the exit time [Sorensen, Voter, 2000]

Algorithm:

• Observe the exit events from O at high temperature

• Extrapolate the high temperature exit events to low
temperature exit events

x1

z1

z2

z3

z4

O

∂O1

∂O2

∂O3∂O4
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Temperature Accelerated Dynamics (2/2)
Recall that, starting from the QSD, the exit event from a given
state O can exactly be modelled using a kinetic Monte Carlo model
with rates

kj = νOL
j e−β[V (zj )−V (x1)] (1 + O(β−1))

where νOL
j =

|µzj
|

π

√

det(∇2V )(x1)
| det(∇2V )(zj )|

Thus,

k loj

khij
≃ exp(−(βlo − βhi )(V (zj)− V (x1)))

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event

Remark: TAD can be seen as a smart saddle point search method
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Generalizations and perspectives

• The parallel replica is a very versatile algorithm: it applies e.g.

to non reversible dynamics, discrete-in-time dynamics,
continuous-time Markov Chain [Aristoff, Plechac, Wang]. It does not
require estimates for the exit rates

• Hyper and TAD are more efficient, but require the
temperature to be sufficiently small so that estimates of the
rates by the Eyring-Kramers formulas hold true

All these techniques require “good” metastable states:
exit time > convergence time to the QSD
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Generalizations and perspectives

Works in progress:

• How to efficiently estimate the convergence to the QSD?

• How to to optimize the definitions of the states? For example,
consider [Blassel, TL, Stoltz]:

max
O

λ2(O)− λ1(O)

λ1(O)

• Combine ParRep with Hyper [Adjoua, Gouraud, Lagardère, Monmarché, Plé]
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Mini-symposia

If you want to learn more on sampling, particle systems and
metastability, join us in the two mini-symposia co-organized with
Pierre Monmarché:

• Wednesday 11:00-13:00: Noé Blassel, Marylou Gabrié,
Tim Johnston, Oliver Tough

• Thursday 14:30-16:30: Shiva Darshan, Elisa Marini,
Mouad Ramil, Adrien Vacher
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