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Introduction



w Theorem (Null-controllability of the heat
equation (Lebeau & Robbiano 1995, Fursikov &
Imanuvilov 1996))

For every T > 0 and every initial condition fo, there
exists u € L%((0,T) x w) such that the solution f of

(at - A)f(t,X) = 1wu(tvx)a f(O, ) =fo
satisfies f(T,-) = 0.
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Observability N
Equivalent dual problem to null-controllability:

(G —AD)g=0 = |g(T, M@ < ClIglleqo,mnxw)



Goal and plan 3

Definition (Half-heat equation)
Iff(x) = Y ane™, |Dilf(x) = X |n|ane™.

nez nez

(Ot + [Dx|)f = 1uu.

Question
- Study the control properties of the half-heat equation.

- Characterize the initial states that can be steered to 0.
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NCy(w,T) does not depend on time
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Results



Lack of controllability of the half-heat 4

Theorem (K, 2015)

Let w be a strict interval of T. The control system (0; + |Dx|)f (t,x) = 1, u(t,x) is
not null-controllable.

Proof. _

Solutions of (8 + |Dx|)g = 0: g(t,x) = 3=, ane~I"tei.

2
dtdy

—nt 5inx

Null-controllability = " |a,|’e™*"" < C/ e

n>0 [0,T]xw

anpe
n>0




Lack of controllability of the half-heat 4

Theorem (K, 2015)
Let w be a strict interval of T. The control system (0; + |Dx|)f (t,x) = 1, u(t,x) is
not null-controllable.

Proof. _
Solutions of (8 + |Dx|)g = 0: g(t,x) = 3=, ane~I"tei.

2
dtdy

ane—ntemx
n>0

Null-controllability = " |a|’e™"" < C
n>0 [0,T]xw

- Change of variables: z = e~*+¥

- Null-controllability = for every
polynonials p € CX], [IPllzoo.e 1)y < ClIPIl2(p)
- This inequality does not hold.




An intermediate problem 5

Definition (Riesz projection)

if f(x) = E a,e™, PLf(x) Za cis

n>0

Definition (The H? control system)
(at + ‘DXD]C(LX) = 1wU(t,X), f(oa ) € Lz(T) (ELZ)



An intermediate problem 5

Definition (Riesz projection)
T£0x) = 3 ane™, Paflx) = > ane™.
n>0
Definition (The H? control system)
(0 + IDx)f (£, %) = Tu(t,x),  £(0,-) € L*(T) (Ei2)
(9 + IDx)f (£, %) = P+ 1uu(t, x),  f(0,) € H(T) (Ere)

Definition
NCp(w,T) = {fo € L*(T), 3u € L*([0,T] x w), solution f of (E;) st. f(T,-) = 0}
NCi2(w,T) = {fo € H(T), 3u € L*([0, T] x w), solution f of (Ex) st. f(T,-) = 0}
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NC(w,T) and NCp2(w, T) do not depend on T.
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Theorem (Hartmann-K 2024)
If fo € H*(T) is nonzero and analytic on T, fo ¢ NCp2(w).
If fo € L?(T) is nonzero and analytic on T, fo & NCp2(w).

Theorem (Hartmann-K 2024)
NCypp(w) (resp. NCi2(w)) and its complement are dense in H*(T) (resp. L*(T)).

Theorem (Hartmann-K 2024)

Let fo € H*(T) such that fo € WY/22(T). Then fo € NC,z(w) if and only if there

exists h € Wgéz’z(w) such that fo = P4 h.

Theorem (Hartmann-K 2024)
Let fo € LX(T). f € NCp2(w, T) <= (P+f0 e NCio(w) and P.f € NCHz(w)).



Internal control vs shaped control 7

Shaped controls [Micu-Zuazua 2006]
Ve > 0, [A(n)] > ce=*" | 3e > 0,[h(n)| < Ce"
Control system (Ot + [Dx)f = wu (8: + |Dx|)f = h(u(t)
Null-controllability Not null-controllable Not null-controllable

Internal controls




Internal control vs shaped control 7

Control system

Internal controls

Shaped controls [Micu-Zuazua 2006]
Ve > 0, [A(n)] > ce=*" | 3e > 0,[h(n)| < Ce"

(O + 1Dx)f = 1wu

(0 + 1Dx])f = h()u(t)

Null-controllability
Set of null-control-

Not null-controllable

Not null-controllable

lable states

dense subspace
Independant of time

{0}

# {0}

depends on time?

Regularity of null-
controllable states

cannot be analytical

some analytical states




NCp(w, T) does not depend on
time




Observability inequality 8

Further annoyances _
R/27Z =T~ {z€C, |z =1}, HYT)~{ anz", (an) € 2}, f(x) ~f(e")
n>0

Proposition (observability inequality)

Let fo € HX(T). fo € NCp(w) if and only if el

there exists C > 0 such that Q

4
27 ) i ’]
vp € CX, / p(eo(@®) dt] < Cllpllagay)-
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Observability inequality 8

Further annoyances _
R/27Z =T~ {z€C, |z =1}, HYT)~{ anz", (an) € 2}, f(x) ~f(e")
n>0

Proposition (observability inequality)

Let fo € HX(T). fo € NCp(w) if and only if el

there exists C > 0 such that Q

4
27 ) i ’]
vp € CX, / p(eo(@®) dt] < Cllpllagay)-

Proof.
fo € NCp»(w) if and only if there exists C > 0 such that for every go € H*(T),

g
|{fo, Go(e™" Nem)* < C/ /|90(e4+'x)|2dtd><-
JO Jw

e tIPdgo(e™) = 2 n>0 éa(”)em_xfm =m0 Go(n)(e* )",
Change of variables z = e~
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Theorem (Orsoni, Hartmann Orsoni)
Let @;,Q, C C open bounded. Assume that d( \ €2, \ ©1) > 0. Then any
g € A%(Q1 N ) can be written as g = g + g, with g; € A(Y).



Separation of singularities

cletT' < T
- Assume [{p, fo)rz| < lIPllzar)

Qr + Prove [(p,fo)we| S I1Plli2ce)

Theorem (Orsoni, Hartmann Orsoni)

Let @;,Q, C C open bounded. Assume that d( \ €2, \ ©1) > 0. Then any
g € A%(Q1 N ) can be written as g = g + g, with g; € A(Y).

Proof that NCy2(w, T) € NCpa(w, T')
- let p € C[X], write it p = g1 + g5, with g1 € L2(Q7), g € LX(Q1)
* g1, fodrel S N9illizny S 1PNy

- (g2, fodrel S 82lle S 192l ey S IPlleanny
* 1P, fo)re| < (g1, fo)re| + (92, fo) e |



Our most precise results

Theorem (Hartmann-K 2024)

Let fo € NCya(w). There exists
h € L*(T) such that

" fo=Pih

- Supp(h) C closure(w)

© T InllA(n)? < +oo
n<o

Theorem (Hartmann-K 2024)
Let h € L*(T) such that

- Supp(h) C closure(w)

- 3 Injlh(n)P < +oo
n<o0

! 2
/wd(Z,aw)|h(Z)| |dz| < +o0.

Then P1h € NCpa(w).



Our most precise results

Theorem (Hartmann-K 2024) Theorem (Hartmann-K 2024)

Let fo € NCi2(w). There exists Let h € L*(T) such that

h € L*(T) such that
- Supp(h) C closure(w)

“Jo=Pyih - Y InllA(n)P < +oo

- Supp(h) C closure(w) n<o

. nllh(n)P < + / h(z)|?|dz| < +oc.
Z ) < +oc Tz 0y NPl

Then P1h € NCpa(w).
Theorem (Hartmann-K 2024)
Let fo € L2(T). fo € NC(w) if and only if there exists h € L?(T) such that
Au(x) =0, xeQr

u(x) =h(x), xew
- Supp(h) C closure(w) u(x) =0, X €0\ w
satisfies d,u € L*(Qr)

- fo=Pyh - The solution u of



That's all folks!




Sufficient condition




Proof of sufficient condition

Theorem (Hartmann-K 2024)
If h € Wi (w), P+h € NCpa(w).

Proof.
- extends h by 0 on 9Qr
- h e W/22(0Qr)

- h extends as an W"2(Qr) function.



Proof of sufficient condition

Theorem (Hartmann-K 2024)
If h € Wi (w), P+h € NCpa(w).

Proof.
- extends h by 0 on 9Qr
- h e W/22(0Qr)
- h extends as an W"2(Qr) function.
- Apply stokes formula:
A@p@)dz =2i | 04(fp)(2) dAD)

oQr Qr



Proof of sufficient condition

Theorem (Hartmann-K 2024)
If h € Wi (w), P+h € NCpa(w).

Proof.
- extends h by 0 on 9Qr K
- h e W/22(6Qy) K

- h extends as an W"?(Qr) function.

- Apply stokes formula:

h(z)p(z)dz =2i [ 8(hp)(2) dA(2)
o9 Qr

- Left-hand side: =~ (h,p). = (h,Pip)e = (PLh,D)pp.
+ Right-hand side: [, 8:(hp)(2) dA(z) = [y, P(2) 8:7(2) dA(2) O
N——

€L (Qr)



Necessary condition




Holomorphic extension

Theorem (Hartmann-K 2024)

Let fo € HX(T). If fo € NCp(w), fo extends as a holomorphic function to

C \ closure(w), and fo(2) |—> 0. Moreover [, 1f(z 2)|?dA(2) < 4.

Proof.

Lt Ry(2) = ——

(1 —T2) If fo € H*(T), fo(u) = {fo, Ru)we
- forall p € C[X], £(p) = (fo, P)r> < ClIPll2 (@)
- extend £ by density to A%(Q7) (space of holomorphic functions on Q which
are [2(Qr))
We can define ¢(k,) if u ¢ Q.

] ) folu) ifful <1 .
p(u) = {ﬁ(ku) fug Qs extends fo. Q:

- kullogan = 00/0) fo@) —— 0 N

“Up) = (o, P folu) = f(ab/?u) = (I?Eergman,<P1QT>A2(|z\>1)

L/




Sufficient condition

Theorem (Hartmann-K 2024)
If fo € H(T) N WY22(T), and fo € NCjp(w), there exists h € Wii??(w) such that

fO = P+h
Proof.
- Extend fp holomorphically to C \ closure(w) as above

- Set
he?) = tim (fo(re?) = fo(r~'e?))

- Idea: Positive frequencies of h: fo||7j<1
Negative frequencies of h: fol|;/>1



Control of all frequencies




From partial control to full control

- We know when the projection on positive frequencies is null-controllable
° H:fo E NCLZ(W., T), P+f0 S NCHZ(W, T)
- Negative frequencies: just consider fy
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- We know when the projection on positive frequencies is null-controllable
° H:fo E NCg(W./ T), P+f0 & ./\/’CHZ(W7 T)
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Theorem (Hartmann-K 2024)
Pfo € NCpp(w)

fo e NCp(w, T)<= {P+fo € NCyp(w)

Proof

- Solution of half-heat: sum of holomorphic and anti-holomorphic functions
in e—t+ix.

- Need: recover the holomorphic part with only information on w

- Need: continuous projection {f € L?(Qr), harmonic} — A%(Qr).

- This already exists (Friedrichs, 1937)



From partial control to full control

- We know when the projection on positive frequencies is null-controllable
° H:fo S NCB(W./ T), P+f0 S ./\/'CHZ((AJ7 T)
- Negative frequencies: just consider fy

Theorem (Hartmann-K 2024)
Pfo € NCpp(w)

fo e NCp(w, T)<= {P+fo € NCiz(w)

Proof

- Solution of half-heat: sum of holomorphic and anti-holomorphic functions
in e—t+ix.

- Need: recover the holomorphic part with only information on w
- Need: continuous projection {f € L?(Qr), harmonic} — A%(Qr).
- This already exists (Friedrichs, 1937)

Translate properties of the H? control system to the L? control system
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