
Control of the half-heat equation
Joint work with Andreas Hartmann

Armand Koenig
Institut de Mathématiques de Bordeaux
June 2nd, 2025

Congrès SMAI
Contrôle des Equations aux Dérivées Partielles



Introduction



Context 2

Ω

ω Theorem (Null-controllability of the heat
equation (Lebeau & Robbiano 1995, Fursikov &
Imanuvilov 1996))
For every T > 0 and every initial condition f0, there
exists u ∈ L2((0, T)× ω) such that the solution f of

(∂t −∆)f (t, x) = 1ωu(t, x), f (0, ·) = f0

satisfies f (T, ·) = 0.

Observability
Equivalent dual problem to null-controllability:

(∂t −∆)g = 0 =⇒ ‖g(T, ·)‖L2(Ω) ≤ C‖g‖L2([0,T]×ω)
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Goal and plan 3

Definition (Half-heat equation)
If f (x) =

∑
n∈Z

aneinx , |Dx|f (x) =
∑
n∈Z

|n|aneinx .

(∂t + |Dx|)f = 1ωu.

Question

• Study the control properties of the half-heat equation.
• Characterize the initial states that can be steered to 0.

Plan
Results
NCH2(ω, T) does not depend on time
Sufficient condition
Necessary condition
Control of all frequencies
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Results



Lack of controllability of the half-heat 4

Theorem (K, 2015)
Let ω be a strict interval of T. The control system (∂t + |Dx|)f (t, x) = 1ωu(t, x) is
not null-controllable.

Proof.
Solutions of (∂t + |Dx|)g = 0: g(t, x) =

∑
n ane−|n|teinx .

Null-controllability =⇒
∑
n>0

|an|2e−2nT ≤ C
∫
[0,T]×ω

∣∣∣∣∑
n>0

ane−nteinx
∣∣∣∣2 dt dy

• Change of variables: z = e−t+ix

• Null-controllability =⇒ for every
polynonials p ∈ C[X], ‖p‖L2(D(0,e−T)) ≤ C‖p‖L2(D)

• This inequality does not hold.

ω

D

D(0, e−T)
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An intermediate problem 5

Definition (Riesz projection)

if f (x) =
∑
n∈Z

aneinx , P+f (x) =
∑
n≥0

aneinx .

Definition (The H2 control system)

(∂t + |Dx|)f (t, x) = 1ωu(t, x), f (0, ·) ∈ L2(T) (EL2)

(∂t + |Dx|)f (t, x) = P+1ωu(t, x), f (0, ·) ∈ H2(T) (EH2)

Annoyance: H2(T) = P+(L2(T)) is the Hardy space

Definition

NCL2(ω, T) = {f0 ∈ L2(T), ∃u ∈ L2([0, T]× ω), solution f of (EL2) s.t. f (T, ·) = 0}
NCH2(ω, T) = {f0 ∈ H2(T), ∃u ∈ L2([0, T]× ω), solution f of (EH2) s.t. f (T, ·) = 0}
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Results 6

Theorem (Hartmann-K 2024)
NCH2(ω, T) and NCL2(ω, T) do not depend on T.

Theorem (Hartmann-K 2024)
If f0 ∈ H2(T) is nonzero and analytic on T, f0 /∈ NCH2(ω).

If f0 ∈ L2(T) is nonzero and analytic on T, f0 /∈ NCL2(ω).

Theorem (Hartmann-K 2024)
NCH2(ω) (resp. NCL2(ω)) and its complement are dense in H2(T) (resp. L2(T)).

Theorem (Hartmann-K 2024)
Let f0 ∈ H2(T) such that f0 ∈ W1/2,2(T). Then f0 ∈ NCH2(ω) if and only if there
exists h ∈ W1/2,2

00 (ω) such that f0 = P+h.

Theorem (Hartmann-K 2024)

Let f0 ∈ L2(T). f ∈ NCL2(ω, T) ⇐⇒
(
P+f0 ∈ NCH2(ω) and P+f0 ∈ NCH2(ω)

)
.
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Internal control vs shaped control 7

Internal controls Shaped controls [Micu-Zuazua 2006]
∀ε > 0, |ĥ(n)| ≥ ce−εn ∃ε > 0, |ĥ(n)| ≤ Ce−εn

Control system (∂t + |Dx|)f = 1ωu (∂t + |Dx|)f = h(x)u(t)
Null-controllability Not null-controllable Not null-controllable

Set of null-control-
lable states

dense subspace {0} 6= {0}
Independant of time depends on time?

Regularity of null–
controllable states

cannot be analytical some analytical states
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∀ε > 0, |ĥ(n)| ≥ ce−εn ∃ε > 0, |ĥ(n)| ≤ Ce−εn
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NCH2(ω, T) does not depend on
time



Observability inequality 8

Further annoyances
R/2πZ = T ≈ {z ∈ C, |z| = 1}, H2(T) ≈ {

∑
n≥0

anzn, (an) ∈ `2}, f (x) ≈ f (eix)

Proposition (observability inequality)

Let f0 ∈ H2(T). f0 ∈ NCH2(ω) if and only if
there exists C > 0 such that

∀p ∈ C[X],
∣∣∣ ∫ 2π

0
p(eit)f0(eit)dt

∣∣∣ ≤ C‖p‖L2(ΩT).

ω
ΩT

1

eT

Proof.
f0 ∈ NCH2(ω) if and only if there exists C > 0 such that for every g0 ∈ H2(T),

|〈f0, 〉H2(T)|2 ≤ C
∫ T

0

∫
ω

||2 dt dx.

e−t|Dx|g0(eix) =
∑

n≥0 ĝ0(n)einx−nt =
∑

n≥0 ĝ0(n)(eix−t)n.
Change of variables z = e−t+ix .
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Separation of singularities 9

Ω̂T′

ω

ΩT
ΩT′

T

• Let T ′ < T
• Assume |〈p, f0〉H2 | . ‖p‖L2(ΩT)

• Prove |〈p, f0〉H2 | . ‖p‖L2(ΩT′ )

Theorem (Orsoni, Hartmann Orsoni)
Let Ω1,Ω2 ⊂ C open bounded. Assume that d(Ω1 \ Ω2,Ω2 \ Ω1) > 0. Then any
g ∈ A2(Ω1 ∩ Ω2) can be written as g = g1 + g2 with gi ∈ A2(Ωi).

Proof that NCH2(ω, T) ⊂ NCH2(ω, T ′)

• let p ∈ C[X], write it p = g1 + g2, with g1 ∈ L2(ΩT), g2 ∈ L2(Ω̂T′)

• |〈g1, f0〉H2 | . ‖g1‖L2(ΩT) . ‖p‖L2(ΩT′ )

• |〈g2, f0〉H2 | . ‖g2‖H2 . ‖g2‖L2(Ω̂T′ )
. ‖p‖L2(ΩT′ )

• |〈p, f0〉H2 | ≤ |〈g1, f0〉H2 |+ |〈g2, f0〉H2 |
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Our most precise results 10

Theorem (Hartmann-K 2024)
Let f0 ∈ NCH2(ω). There exists
h ∈ L2(T) such that

• f0 = P+h
• Supp(h) ⊂ closure(ω)

•
∑
n≤0

|n||ĥ(n)|2 < +∞

Theorem (Hartmann-K 2024)
Let h ∈ L2(T) such that

• Supp(h) ⊂ closure(ω)

•
∑
n≤0

|n||ĥ(n)|2 < +∞

•
∫
ω

1
d(z, ∂ω)

|h(z)|2|dz| < +∞.

Then P+h ∈ NCH2(ω).

Theorem (Hartmann-K 2024)
Let f0 ∈ L2(T). f0 ∈ NCH2(ω) if and only if there exists h ∈ L2(T) such that

• f0 = P+h
• Supp(h) ⊂ closure(ω)

• The solution u of


∆u(x) = 0, x ∈ ΩT

u(x) = h(x), x ∈ ω

u(x) = 0, x ∈ ∂ΩT \ ω
satisfies ∂zu ∈ L2(ΩT)
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That’s all folks!



Sufficient condition



Proof of sufficient condition 12

Theorem (Hartmann-K 2024)

If h ∈ W1/2,2
00 (ω), P+h ∈ NCH2(ω).

Proof.

• extends h by 0 on ∂ΩT

• h ∈ W1/2,2(∂ΩT)

• h extends as an W1,2(ΩT) function.

• Apply stokes formula:∫
∂ΩT

h̄(z)p(z)dz = 2i
∫
ΩT

∂z(h̄p)(z)dA(z)

• Left-hand side: ≈ 〈h,p〉H2 = 〈h,P+p〉H2 = 〈P+h,p〉H2 .
• Right-hand side:

∫
ΩT

∂z(h̄p)(z)dA(z) =
∫
ΩT
p(z) ∂zh̄(z)︸ ︷︷ ︸

∈L2(ΩT)

dA(z)

ω
ΩT
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Necessary condition



Holomorphic extension 13

Theorem (Hartmann-K 2024)
Let f0 ∈ H2(T). If f0 ∈ NCH2(ω), f0 extends as a holomorphic function to
C \ closure(ω), and f0(z) −−−−→

|z|→∞
0. Moreover

∫
|z|>1 |f

′
0(z)|2 dA(z) < +∞.

Proof.
• let ku(z) =

1
2π(1− uz)

. If f0 ∈ H2(T), f0(u) = 〈f0, ku〉H2 .

• for all p ∈ C[X], `(p) := 〈f0,p〉H2 ≤ C‖p‖L2(ΩT)

• extend ` by density to A2(ΩT) (space of holomorphic functions on ΩT which
are L2(ΩT))
We can define `(ku) if u /∈ Ω∗

T .

• φ(u) =
{
f0(u) if |u| < 1
`(ku) if u /∈ Ω∗

T
extends f0.

• ‖ku‖L2(ΩT) = O(1/u): f0(z) −−−−→
|z|→∞

0

• `(p) = 〈ϕ,p〉A2(ΩT) f ′0(u) = `(∂uku) = 〈kBergman
u , ϕ1ΩT 〉A2(|z|>1)

Ω∗
T



Sufficient condition 14

Theorem (Hartmann-K 2024)

If f0 ∈ H2(T) ∩W1/2,2(T), and f0 ∈ NCH2(ω), there exists h ∈ W1/2,2
00 (ω) such that

f0 = P+h.

Proof.

• Extend f0 holomorphically to C \ closure(ω) as above
• Set

h(eiθ) = lim
r→1−

(
f0(reiθ)− f0(r−1eiθ)

)
• Idea: Positive frequencies of h: f0||z|<1
Negative frequencies of h: f0||z|>1



Control of all frequencies



From partial control to full control 15

• We know when the projection on positive frequencies is null-controllable
• If f0 ∈ NCL2(ω, T), P+f0 ∈ NCH2(ω, T)
• Negative frequencies: just consider f0

Theorem (Hartmann-K 2024)

f0 ∈ NCL2(ω, T)
{
P+f0 ∈ NCH2(ω)
P+f0 ∈ NCH2(ω)

Proof

• Solution of half-heat: sum of holomorphic and anti-holomorphic functions
in e−t+ix .

• Need: recover the holomorphic part with only information on ω

• Need: continuous projection {f ∈ L2(ΩT), harmonic} → A2(ΩT).
• This already exists (Friedrichs, 1937)

Translate properties of the H2 control system to the L2 control system
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