Control of the half-heat equation

Joint work with Andreas Hartmann

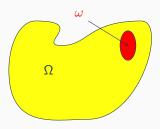
Armand Koenig Institut de Mathématiques de Bordeaux

June 2nd, 2025

Congrès SMAI Contrôle des Equations aux Dérivées Partielles

Introduction

Context

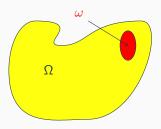


Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995, Fursikov & Imanuvilov 1996))

For every T > 0 and every initial condition f_0 , there exists $u \in L^2((0,T) \times \omega)$ such that the solution f of $(\partial_t - \Delta)f(t,x) = \mathbf{1}_{\omega}u(t,x), \quad f(0,\cdot) = f_0$

satisfies $f(T, \cdot) = 0$.

Context



Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995, Fursikov & Imanuvilov 1996))

For every T > 0 and every initial condition f_0 , there exists $u \in L^2((0,T) \times \omega)$ such that the solution f of $(\partial_t - \Delta)f(t,x) = \mathbf{1}_{\omega}u(t,x), \quad f(0,\cdot) = f_0$

satisfies $f(T, \cdot) = 0$.

Observability Equivalent dual problem to null-controllability:

 $(\partial_t - \Delta)g = 0 \implies \|g(T, \cdot)\|_{L^2(\Omega)} \le C \|g\|_{L^2([0,T] \times \boldsymbol{\omega})}$

Goal and plan

Definition (Half-heat equation)

If $f(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx}$, $|D_x| f(x) = \sum_{n \in \mathbb{Z}} |n| a_n e^{inx}$.

$$(\partial_t + |D_x|)f = \mathbf{1}_{\boldsymbol{\omega}} u.$$

Question

- Study the control properties of the half-heat equation.
- Characterize the initial states that can be steered to 0.

Goal and plan

Definition (Half-heat equation)

If $f(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx}$, $|D_x| f(x) = \sum_{n \in \mathbb{Z}} |n| a_n e^{inx}$.

 $(\partial_t + |D_x|)f = \mathbf{1}_{\boldsymbol{\omega}}u.$

Question

- Study the control properties of the half-heat equation.
- Characterize the initial states that can be steered to 0.

Plan

Results

- $\mathcal{NC}_{H^2}(\pmb{\omega},T)$ does not depend on time
- Sufficient condition
- Necessary condition
- Control of all frequencies

Theorem (K, 2015)

Let ω be a strict interval of \mathbb{T} . The control system $(\partial_t + |D_x|)f(t,x) = \mathbf{1}_{\omega}u(t,x)$ is not null-controllable.

Proof. Solutions of $(\partial_t + |D_x|)g = 0$: $g(t, x) = \sum_n a_n e^{-|n|t} e^{inx}$. Null-controllability $\implies \sum_{n>0} |a_n|^2 e^{-2nT} \le C \int_{[0,T] \times \omega} \left| \sum_{n>0} a_n e^{-nt} e^{inx} \right|^2 dt dy$

Theorem (K, 2015)

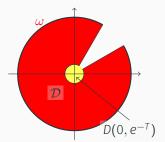
Let ω be a strict interval of \mathbb{T} . The control system $(\partial_t + |D_x|)f(t,x) = \mathbf{1}_{\omega}u(t,x)$ is not null-controllable.

Proof.

Solutions of $(\partial_t + |D_x|)g = 0$: $g(t, x) = \sum_n a_n e^{-|n|t} e^{inx}$.

Null-controllability
$$\implies \sum_{n>0} |a_n|^2 e^{-2nT} \le C \int_{[0,T] \times \omega} \left| \sum_{n>0} a_n e^{-nt} e^{inx} \right|^2 \mathrm{d}t \,\mathrm{d}y$$

- Change of variables: $z = e^{-t+ix}$
- Null-controllability \implies for every polynonials $p \in \mathbb{C}[X]$, $\|p\|_{L^2(\mathcal{D}(0,e^{-\tau}))} \leq C \|p\|_{L^2(\mathcal{D})}$
- This inequality does not hold.



An intermediate problem

Definition (Riesz projection)

if
$$f(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx}$$
, $P_+ f(x) = \sum_{n \ge 0} a_n e^{inx}$.

Definition (The H² control system)

$$(\partial_t + |D_x|)f(t,x) = \mathbf{1}_{\boldsymbol{\omega}} u(t,x), \qquad f(0,\cdot) \in L^2(\mathbb{T})$$
 (E_{L²})

An intermediate problem

Definition (Riesz projection)

if
$$f(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx}$$
, $P_+ f(x) = \sum_{n \ge 0} a_n e^{inx}$.

Definition (The H² control system)

$$\begin{aligned} (\partial_t + |D_x|)f(t,x) &= \mathbf{1}_{\boldsymbol{\omega}} u(t,x), \qquad f(0,\cdot) \in L^2(\mathbb{T}) \\ (\partial_t + |D_x|)f(t,x) &= P_+ \mathbf{1}_{\boldsymbol{\omega}} u(t,x), \quad f(0,\cdot) \in H^2(\mathbb{T}) \end{aligned} \tag{E}_{H^2}$$

Annoyance: $H^2(\mathbb{T}) = P_+(L^2(\mathbb{T}))$ is the Hardy space

Definition

 $\mathcal{NC}_{L^2}(\boldsymbol{\omega}, T) = \{f_0 \in L^2(\mathbb{T}), \exists u \in L^2([0, T] \times \boldsymbol{\omega}), \text{ solution } f \text{ of } (E_{L^2}) \text{ s.t. } f(T, \cdot) = 0\}$ $\mathcal{NC}_{H^2}(\boldsymbol{\omega}, T) = \{f_0 \in H^2(\mathbb{T}), \exists u \in L^2([0, T] \times \boldsymbol{\omega}), \text{ solution } f \text{ of } (E_{H^2}) \text{ s.t. } f(T, \cdot) = 0\}$

Theorem (Hartmann-K 2024)

 $\mathcal{NC}_{H^2}(\omega, T)$ and $\mathcal{NC}_{L^2}(\omega, T)$ do not depend on T.

Theorem (Hartmann-K 2024)

If $f_0 \in H^2(\mathbb{T})$ is nonzero and analytic on \mathbb{T} , $f_0 \notin \mathcal{NC}_{H^2}(\omega)$.

If $f_0 \in L^2(\mathbb{T})$ is nonzero and analytic on \mathbb{T} , $f_0 \notin \mathcal{NC}_{L^2}(\boldsymbol{\omega})$.

Theorem (Hartmann-K 2024)

 $\mathcal{NC}_{H^2}(\omega)$ (resp. $\mathcal{NC}_{L^2}(\omega)$) and its complement are dense in $H^2(\mathbb{T})$ (resp. $L^2(\mathbb{T})$).

Theorem (Hartmann-K 2024)

 $\mathcal{NC}_{H^2}(\omega, T)$ and $\mathcal{NC}_{L^2}(\omega, T)$ do not depend on T.

Theorem (Hartmann-K 2024)

If $f_0 \in H^2(\mathbb{T})$ is nonzero and analytic on \mathbb{T} , $f_0 \notin \mathcal{NC}_{H^2}(\omega)$.

If $f_0 \in L^2(\mathbb{T})$ is nonzero and analytic on \mathbb{T} , $f_0 \notin \mathcal{NC}_{L^2}(\boldsymbol{\omega})$.

Theorem (Hartmann-K 2024)

 $\mathcal{NC}_{H^2}(\omega)$ (resp. $\mathcal{NC}_{L^2}(\omega)$) and its complement are dense in $H^2(\mathbb{T})$ (resp. $L^2(\mathbb{T})$).

Theorem (Hartmann-K 2024)

Let $f_0 \in H^2(\mathbb{T})$ such that $f_0 \in W^{1/2,2}(\mathbb{T})$. Then $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists $h \in W_{00}^{1/2,2}(\omega)$ such that $f_0 = P_+h$.

Theorem (Hartmann-K 2024)

 $\mathcal{NC}_{H^2}(\omega, T)$ and $\mathcal{NC}_{L^2}(\omega, T)$ do not depend on T.

Theorem (Hartmann-K 2024)

If $f_0 \in H^2(\mathbb{T})$ is nonzero and analytic on \mathbb{T} , $f_0 \notin \mathcal{NC}_{H^2}(\omega)$.

If $f_0 \in L^2(\mathbb{T})$ is nonzero and analytic on \mathbb{T} , $f_0 \notin \mathcal{NC}_{L^2}(\boldsymbol{\omega})$.

Theorem (Hartmann-K 2024)

 $\mathcal{NC}_{H^2}(\omega)$ (resp. $\mathcal{NC}_{L^2}(\omega)$) and its complement are dense in $H^2(\mathbb{T})$ (resp. $L^2(\mathbb{T})$).

Theorem (Hartmann-K 2024)

Let $f_0 \in H^2(\mathbb{T})$ such that $f_0 \in W^{1/2,2}(\mathbb{T})$. Then $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists $h \in W_{00}^{1/2,2}(\omega)$ such that $f_0 = P_+h$.

Theorem (Hartmann-K 2024)

Let $f_0 \in L^2(\mathbb{T})$. $f \in \mathcal{NC}_{L^2}(\omega, T) \iff \left(P_+f_0 \in \mathcal{NC}_{H^2}(\omega) \text{ and } P_+\overline{f_0} \in \mathcal{NC}_{H^2}(\omega)\right)$.

	Internal controls	Shaped controls [Micu-Zuazua 2006] $\forall \epsilon > 0, \hat{h}(n) \ge ce^{-\epsilon n} \exists \epsilon > 0, \hat{h}(n) \le Ce^{-\epsilon n}$	
Control system	$(\partial_t + D_x)f = 1_{\boldsymbol{\omega}} u$	$(\partial_t + D_x)f = h(x)u(t)$	
Null-controllability	Not null-controllable	Not null-controllable	

	Internal controls	Shaped controls $\forall \epsilon > 0, \hat{h}(n) \ge ce^{-\epsilon n}$	[Micu-Zuazua 2006] $\exists \epsilon > 0, \hat{h}(n) \leq Ce^{-\epsilon n}$
Control system	$(\partial_t + D_X)f = 1_{\boldsymbol{\omega}} u$	$(\partial_t + D_x)f = h(x)u(t)$	
Null-controllability	Not null-controllable	Not null-controllable	
Set of null-control-	dense subspace	{0}	$\neq \{0\}$
lable states	Independant of time		depends on time?
Regularity of null– controllable states	cannot be analytical		some analytical states

$\mathcal{NC}_{H^2}(\omega, T)$ does not depend on time

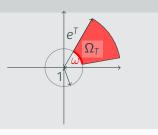
Further annoyances

 $\mathbb{R}/2\pi\mathbb{Z} = \mathbb{T} \approx \{z \in \mathbb{C}, |z| = 1\}, \quad H^2(\mathbb{T}) \approx \{\sum_{n \ge 0} a_n z^n, (a_n) \in \ell^2\}, \quad f(x) \approx f(e^{ix})$

Proposition (observability inequality)

Let $f_0 \in H^2(\mathbb{T})$. $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists C > 0 such that

$$\forall p \in \mathbb{C}[X], \left| \int_0^{2\pi} p(e^{it}) \overline{f_0(e^{it})} \, \mathrm{d}t \right| \leq C \|p\|_{L^2(\Omega_T)}.$$



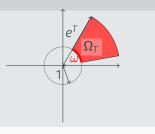
Further annoyances

 $\mathbb{R}/2\pi\mathbb{Z} = \mathbb{T} \approx \{ z \in \mathbb{C}, |z| = 1 \}, \quad H^2(\mathbb{T}) \approx \{ \sum_{n \ge 0} a_n z^n, (a_n) \in \ell^2 \}, \quad f(x) \approx f(e^{ix}) \}$

Proposition (observability inequality)

Let $f_0 \in H^2(\mathbb{T})$. $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists C > 0 such that

$$\forall p \in \mathbb{C}[X], \left| \int_0^{2\pi} p(e^{it}) \overline{f_0(e^{it})} \, \mathrm{d}t \right| \leq C \|p\|_{L^2(\Omega_T)}.$$



Proof. $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists C > 0 such that for every $g_0 \in H^2(\mathbb{T})$, $|\langle f_0, e^{-T|D_x|}g_0 \rangle_{H^2(\mathbb{T})}|^2 \leq C \int_0^T \int_{\omega} |e^{-t|D_x|}g_0(e^{ix})|^2 dt dx.$

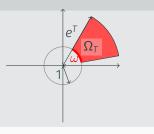
Further annoyances

 $\mathbb{R}/2\pi\mathbb{Z} = \mathbb{T} \approx \{ z \in \mathbb{C}, |z| = 1 \}, \quad H^2(\mathbb{T}) \approx \{ \sum_{n \ge 0} a_n z^n, (a_n) \in \ell^2 \}, \quad f(x) \approx f(e^{ix}) \}$

Proposition (observability inequality)

Let $f_0 \in H^2(\mathbb{T})$. $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists C > 0 such that

$$\forall p \in \mathbb{C}[X], \left| \int_0^{2\pi} p(e^{it}) \overline{f_0(e^{it})} \, \mathrm{d}t \right| \leq C \|p\|_{L^2(\Omega_T)}.$$



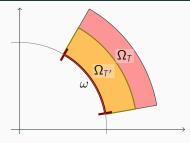
Proof.

 $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists C > 0 such that for every $g_0 \in H^2(\mathbb{T})$,

$$|\langle f_0, g_0(e^{-\tau}) \rangle_{H^2(\mathbb{T})}|^2 \leq C \int_0^T \int_{\omega} |g_0(e^{-t+ix})|^2 \, \mathrm{d}t \, \mathrm{d}x.$$

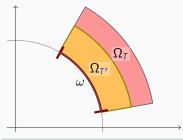
 $\begin{array}{l} e^{-t|D_x|}g_0(e^{ix}) = \sum_{n\geq 0} \widehat{g_0}(n)e^{inx-nt} = \sum_{n\geq 0} \widehat{g_0}(n)(e^{ix-t})^n. \\ \text{Change of variables } z = e^{-t+ix}. \end{array}$

Separation of singularities



- Let T' < T
- Assume $|\langle p, f_0 \rangle_{H^2}| \lesssim \|p\|_{L^2(\mathbf{\Omega}_{\tau})}$
- Prove $|\langle p, f_0 \rangle_{H^2}| \lesssim \|p\|_{L^2(\Omega_{T'})}$

Separation of singularities

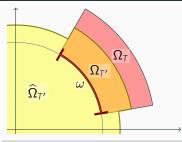


- Let T' < T
- Assume $|\langle p, f_0 \rangle_{H^2}| \lesssim \|p\|_{L^2(\mathbf{\Omega}_{\tau})}$
- Prove $|\langle p, f_0 \rangle_{H^2}| \lesssim \|p\|_{L^2(\Omega_{T'})}$

Theorem (Orsoni, Hartmann Orsoni)

Let $\Omega_1, \Omega_2 \subset \mathbb{C}$ open bounded. Assume that $d(\Omega_1 \setminus \Omega_2, \Omega_2 \setminus \Omega_1) > 0$. Then any $g \in A^2(\Omega_1 \cap \Omega_2)$ can be written as $g = g_1 + g_2$ with $g_i \in A^2(\Omega_i)$.

Separation of singularities



- Let T' < T
- Assume $|\langle p, f_0 \rangle_{H^2}| \lesssim \|p\|_{L^2(\mathbf{\Omega}_7)}$
- Prove $|\langle p, f_0 \rangle_{H^2}| \lesssim \|p\|_{L^2(\Omega_{T'})}$

Theorem (Orsoni, Hartmann Orsoni)

Let $\Omega_1, \Omega_2 \subset \mathbb{C}$ open bounded. Assume that $d(\Omega_1 \setminus \Omega_2, \Omega_2 \setminus \Omega_1) > 0$. Then any $g \in A^2(\Omega_1 \cap \Omega_2)$ can be written as $g = g_1 + g_2$ with $g_i \in A^2(\Omega_i)$.

Proof that $\mathcal{NC}_{H^2}(\omega, T) \subset \mathcal{NC}_{H^2}(\omega, T')$

- let $p \in \mathbb{C}[X]$, write it $p = g_1 + g_2$, with $g_1 \in L^2(\Omega_T)$, $g_2 \in L^2(\widehat{\Omega_{T'}})$
- $\cdot |\langle g_1, f_0 \rangle_{H^2}| \lesssim \|g_1\|_{L^2(\mathbf{\Omega}_{T'})} \lesssim \|p\|_{L^2(\mathbf{\Omega}_{T'})}$
- $\cdot |\langle g_2, f_0 \rangle_{H^2}| \lesssim \|g_2\|_{H^2} \lesssim \|g_2\|_{L^2(\widehat{\Omega_{\tau'}})} \lesssim \|p\|_{L^2(\overline{\Omega_{\tau'}})}$
- $|\langle p, f_0 \rangle_{H^2}| \le |\langle g_1, f_0 \rangle_{H^2}| + |\langle g_2, f_0 \rangle_{H^2}|$

Our most precise results

Theorem (Hartmann-K 2024)

Let $f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega})$. There exists $h \in L^2(\mathbb{T})$ such that

- $\cdot f_0 = P_+ h$
- $\mathsf{Supp}(h) \subset \mathsf{closure}(\boldsymbol{\omega})$
- $\sum_{n\leq 0} |n| |\widehat{h}(n)|^2 < +\infty$

Theorem (Hartmann-K 2024) Let $h \in L^2(\mathbb{T})$ such that

- Supp $(h) \subset \text{closure}(\omega)$
- $\sum_{n\leq 0} |n| |\widehat{h}(n)|^2 < +\infty$
- $\cdot \int_{\omega} \frac{1}{\mathsf{d}(z,\partial\omega)} |h(z)|^2 |\mathrm{d}z| < +\infty.$

Then $P_+h \in \mathcal{NC}_{H^2}(\boldsymbol{\omega})$.

Our most precise results

Theorem (Hartmann-K 2024)

Let $f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega})$. There exists $h \in L^2(\mathbb{T})$ such that

 $\cdot f_0 = P_+ h$

 $\cdot f_0 = P_+ h$

- Supp $(h) \subset \text{closure}(\omega)$
- $\cdot \sum |n| |\widehat{h}(n)|^2 < +\infty$ n < 0

Theorem (Hartmann-K 2024)

Let $h \in L^2(\mathbb{T})$ such that

- Supp $(h) \subset \text{closure}(\omega)$
- $\sum |n||\widehat{h}(n)|^2 < +\infty$

$$\cdot \int_{\omega} \frac{1}{\mathsf{d}(z,\partial\omega)} |h(z)|^2 |\mathrm{d}z| < +\infty.$$

Then $P_+h \in \mathcal{NC}_{H^2}(\omega)$.

Theorem (Hartmann-K 2024)

Let $f_0 \in L^2(\mathbb{T})$. $f_0 \in \mathcal{NC}_{H^2}(\omega)$ if and only if there exists $h \in L^2(\mathbb{T})$ such that

$$\begin{array}{l} \cdot f_0 = P_+ h \\ \cdot \text{ Supp}(h) \subset \text{closure}(\boldsymbol{\omega}) \end{array} \quad \cdot \text{ The solution } u \text{ of } \begin{cases} \Delta u(x) = 0, & x \in \Omega_T \\ u(x) = h(x), & x \in \boldsymbol{\omega} \\ u(x) = 0, & x \in \partial \Omega_T \setminus \boldsymbol{\omega} \end{cases}$$

satisfies $\partial_{\tau} u \in L^2(\Omega_T)$

That's all folks!

Sufficient condition

Proof of sufficient condition

Theorem (Hartmann-K 2024)

If $h \in W_{00}^{1/2,2}(\boldsymbol{\omega})$, $P_+h \in \mathcal{NC}_{H^2}(\boldsymbol{\omega})$.

Proof.

- \cdot extends *h* by 0 on $\partial \Omega_T$
- $h \in W^{1/2,2}(\partial \Omega_T)$
- *h* extends as an $W^{1,2}(\Omega_T)$ function.

Proof of sufficient condition

Theorem (Hartmann-K 2024)

If $h \in W_{00}^{1/2,2}(\boldsymbol{\omega})$, $P_+h \in \mathcal{NC}_{H^2}(\boldsymbol{\omega})$.

Proof.

- \cdot extends *h* by 0 on $\partial \Omega_T$
- $h \in W^{1/2,2}(\partial \Omega_T)$
- *h* extends as an $W^{1,2}(\Omega_T)$ function.
- Apply stokes formula:

$$\int_{\partial\Omega_{T}}\bar{h}(z)p(z)\,\mathrm{d}z=2i\int_{\Omega_{T}}\partial_{\overline{z}}(\bar{h}p)(z)\,\mathrm{d}A(z)$$

Proof of sufficient condition

Theorem (Hartmann-K 2024)

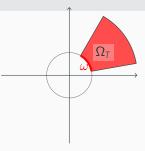
If $h \in W_{00}^{1/2,2}(\boldsymbol{\omega})$, $P_+h \in \mathcal{NC}_{H^2}(\boldsymbol{\omega})$.

Proof.

- \cdot extends *h* by 0 on $\partial \Omega_T$
- $h \in W^{1/2,2}(\partial \Omega_T)$
- *h* extends as an $W^{1,2}(\Omega_T)$ function.
- Apply stokes formula:

$$\int_{\partial\Omega_{T}} \bar{h}(z)p(z) \, \mathrm{d}z = 2i \int_{\Omega_{T}} \partial_{\bar{z}}(\bar{h}p)(z) \, \mathrm{d}A(z)$$

- Left-hand side: $\approx \langle h, p \rangle_{H^2} = \langle h, P_+p \rangle_{H^2} = \langle P_+h, p \rangle_{H^2}.$
- Right-hand side: $\int_{\Omega_T} \partial_{\overline{z}}(\overline{h}p)(z) \, dA(z) = \int_{\Omega_T} p(z) \underbrace{\partial_{\overline{z}}\overline{h}(z)}_{\in L^2(\Omega_T)} dA(z)$



Necessary condition

Theorem (Hartmann-K 2024)

Let $f_0 \in H^2(\mathbb{T})$. If $f_0 \in \mathcal{NC}_{H^2}(\omega)$, f_0 extends as a holomorphic function to $\mathbb{C} \setminus \text{closure}(\omega)$, and $f_0(z) \xrightarrow[|z| \to \infty]{} 0$. Moreover $\int_{|z|>1} |f'_0(z)|^2 dA(z) < +\infty$.

Proof.

• let
$$k_u(z) = \frac{1}{2\pi(1-\overline{u}z)}$$
. If $f_0 \in H^2(\mathbb{T})$, $f_0(u) = \langle f_0, k_u \rangle_{H^2}$.

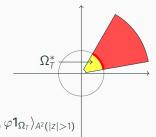
• for all $p \in \mathbb{C}[X]$, $\ell(p) := \langle f_0, p \rangle_{H^2} \le C \|p\|_{L^2(\Omega_T)}$

• extend ℓ by density to $A^2(\Omega_T)$ (space of holomorphic functions on Ω_T which are $L^2(\Omega_T)$) We can define $\ell(k_u)$ if $u \notin \Omega_T^*$.

$$\cdot \phi(u) = \begin{cases} f_0(u) & \text{if } |u| < 1\\ \ell(k_u) & \text{if } u \notin \Omega_T^* \end{cases} \text{ extends } f_0. \end{cases}$$

 $\cdot \ \|k_u\|_{L^2(\Omega_T)} = O(1/u): f_0(z) \xrightarrow[|z| \to \infty]{} 0$

 $\cdot \ \ell(p) = \langle \varphi, p \rangle_{A^{2}(\Omega_{T})} \quad f_{0}'(u) = \ell(\partial_{\overline{u}} k_{u}) = \langle k_{u}^{\text{Bergman}}, \varphi \mathbf{1}_{\Omega_{T}} \rangle_{A^{2}(|z| > 1)}$



Theorem (Hartmann-K 2024)

If $f_0 \in H^2(\mathbb{T}) \cap W^{1/2,2}(\mathbb{T})$, and $f_0 \in \mathcal{NC}_{H^2}(\omega)$, there exists $h \in W^{1/2,2}_{00}(\omega)$ such that $f_0 = P_+h$.

Proof.

• Extend f_0 holomorphically to $\mathbb{C} \setminus \text{closure}(\boldsymbol{\omega})$ as above

• Set

$$h(e^{i\theta}) = \lim_{r \to 1^-} \left(f_0(re^{i\theta}) - f_0(r^{-1}e^{i\theta}) \right)$$

• Idea: Positive frequencies of $h: f_0|_{|z|<1}$ Negative frequencies of $h: f_0|_{|z|>1}$

Control of all frequencies

- \cdot We know when the projection on positive frequencies is null-controllable
- If $f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T)$, $P_+f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}, T)$
- Negative frequencies: just consider $\overline{f_0}$

- \cdot We know when the projection on positive frequencies is null-controllable
- If $f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T)$, $P_+f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}, T)$
- Negative frequencies: just consider $\overline{f_0}$

Theorem (Hartmann-K 2024)

$$f_{0} \in \mathcal{NC}_{L^{2}}(\boldsymbol{\omega}, T) \implies \begin{cases} P_{+}f_{0} \in \mathcal{NC}_{H^{2}}(\boldsymbol{\omega}) \\ P_{+}\overline{f_{0}} \in \mathcal{NC}_{H^{2}}(\boldsymbol{\omega}) \end{cases}$$

- \cdot We know when the projection on positive frequencies is null-controllable
- If $f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T)$, $P_+f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}, T)$
- Negative frequencies: just consider $\overline{f_0}$

Theorem (Hartmann-K 2024)

$$f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T) \Longleftrightarrow \begin{cases} P_+ f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}) \\ P_+ \overline{f_0} \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}) \end{cases}$$

- \cdot We know when the projection on positive frequencies is null-controllable
- If $f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T)$, $P_+f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}, T)$
- Negative frequencies: just consider $\overline{f_0}$

Theorem (Hartmann-K 2024)

$$f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T) \Longleftrightarrow \begin{cases} P_+ f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}) \\ P_+ \overline{f_0} \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}) \end{cases}$$

Proof

- Solution of half-heat: sum of holomorphic and anti-holomorphic functions in e^{-t+ix} .
- Need: recover the holomorphic part with only information on ω
- Need: continuous projection $\{f \in L^2(\Omega_T), \text{ harmonic}\} \to A^2(\Omega_T)$.
- This already exists (Friedrichs, 1937)

- $\cdot\,$ We know when the projection on positive frequencies is null-controllable
- If $f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T)$, $P_+f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}, T)$
- Negative frequencies: just consider $\overline{f_0}$

Theorem (Hartmann-K 2024)

$$f_0 \in \mathcal{NC}_{L^2}(\boldsymbol{\omega}, T) \Longleftrightarrow \begin{cases} P_+ f_0 \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}) \\ P_+ \overline{f_0} \in \mathcal{NC}_{H^2}(\boldsymbol{\omega}) \end{cases}$$

Proof

- Solution of half-heat: sum of holomorphic and anti-holomorphic functions in e^{-t+ix} .
- Need: recover the holomorphic part with only information on ω
- Need: continuous projection $\{f \in L^2(\Omega_T), \text{ harmonic}\} \to A^2(\Omega_T)$.
- This already exists (Friedrichs, 1937)

Translate properties of the H^2 control system to the L^2 control system