Introduction	Mathematical Model	Numerical Methods	Results	Conclusions	References

Towards a Digital Twin of the Gut Microbiota: Multiscale Modeling and Host Interaction

Eleonora Pastremoli

Introduction	Mathematical Model	Numerical Methods	Results	Conclusions	References

Outline

1 Introduction

- **2** Mathematical Model
- **8** Numerical Methods
- **4** Results

Biological context

The gut microbiota:

- plays a vital role in many physiological processes,
- imbalance is linked to numerous **diseases**,
- hosts more than 500 bacterial species.
- Understanding host-gut microbiota interactions is crucial.

Magnified view of the colon showing lumen and double mucus layer.

Biological representation of the main symbiotic mechanisms¹.

Introduction ○○●	Mathematical Model	Numerical Methods	Results	Conclusions	References

Objective

Establish a **computational framework** that integrates models at **different spatial scales** to simulate host-gut microbiota symbiosis:

Introduction	Mathematical Model ●0000	Numerical Methods	Results	Conclusions	References

Geometry

- Colon model ²³: Cylindrical domain Ω_{colon} ⊂ ℝ³. By assuming axisymmetry in cylindrical coordinates, the problem is reduced to two dimensions.
- 2 Crypt model ⁴: 1D spatial domain Ω_{crypt} ⊂ ℝ with each cell located at z ∈ [0, z_{max}]. Assuming crypts are perfectly synchronized, only one crypt per section is modeled.

N_{crypt}: crypt density per surface unit.

Colon model

Mass conservation

$$\begin{split} \partial_t f_i &-\operatorname{div}(\sigma_i \nabla f_i) + \operatorname{div}(f_i u_i) = F_i \\ & \left(-\sigma_i \nabla f_i + f_i u_i \right) \cdot n = \gamma_{f_i} \end{split} \begin{array}{l} \text{SOLID} \\ \\ \partial_t c_j &-\operatorname{div}(\sigma_j \nabla c_j) + \operatorname{div}(c_j u) = G_j \\ & \left(-\sigma \nabla c_j + c_j u \right) \cdot n = \gamma_{c_j} \end{split} \begin{array}{l} \\ \\ \\ \end{array} \end{split}$$

Stokes model

$$\begin{cases} -\nabla \cdot (\underline{\mu}(f)\varepsilon(u)) + \nabla p = 0 & \text{in } \Omega_{colon} \\ \nabla \cdot u = 0 & \text{in } \Omega_{colon} \end{cases} \\ \begin{cases} u \cdot n = -U_{in} & \text{on } \Gamma_{in} \\ u_r = \sum_i \gamma_{f_i} + U_{\text{per},r} & \text{on } \Gamma_m \\ u_z = U_{\text{per},z} & \text{on } \Gamma_m \\ (-p I + \mu(f)\varepsilon(u)) \cdot n = 0 & \text{on } \Gamma_{\text{out}} \end{cases}$$

$$\begin{split} \text{where } \varepsilon(\boldsymbol{u}) &:= \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top} \right) \\ \hline \boldsymbol{\mu}(f) &= \max \left(\mu_m(f_{hm}(x,z,t)), \mu_l(f_l(x,z,t)) \right) \\ \bullet \quad \mu_m(f_m) &= \mu_{m,\min} + (\mu_{m,\max} - \mu_{m,\min}) \frac{f_{hm}^{\alpha_m}}{f_{hm}^{\alpha_m} + f_{hm}^{\alpha_m}} \\ \bullet \quad \mu_l(f_l) &= \mu_{l,\max} - (\mu_{l,\max} - \mu_{l,\min}) \frac{f_{l}^{\alpha_l}}{f_{l,\text{thr}}^{\alpha_l} + f_{l}^{\alpha_l}} \end{split}$$

Hard Mucus Layer

$$\partial_t f_{hm} - div (\sigma_{hm} \nabla f_{hm}) + div (f_{hm} \underline{u_{hm}}) = F_{hm}$$
 in Ω_{colon}

$$\left(-\sigma_{hm}\nabla f_{hm}+f_{hm}u_{hm}\right)\cdot n=0$$
 on Γ_{in}

$$\left(-\sigma_{hm} \nabla f_{hm} + f_{hm} u_{hm} \right) \cdot n = -0.2 \cdot q_m \cdot N_{crypt} \cdot \overline{N_{gc}} \qquad \text{on } \Gamma_m$$

$$\left(-\sigma_t \cdot \nabla f_{tm} + f_{tm} u_{tm} \right) \cdot n = 0 \qquad \text{on } \Gamma_m$$

$$u_{hm} = \begin{bmatrix} U_a \\ 0 \end{bmatrix}, \qquad U_a = A_{top} + \frac{A_{bot} - A_{top}}{1 + e^{-k(f_{hm} - thr)}}$$

 thr is the region of the domain where the concentration of hm is sufficient to prevent penetration

Soft Mucus Layer

$$\partial_t f_{sm} - div (\sigma_{sm} \nabla f_{sm}) + div (f_{sm} u) = F_{sm}$$
 in Ω_{colon}

$$\left(-\sigma_{sm}\nabla f_{sm} + f_{sm}u\right) \cdot n = -U_{in}f_{sm,in}$$
 on Γ_{in}

$$\left(-\sigma_{sm}\nabla f_{sm} + f_{sm}u\right) \cdot n = -0.8 \cdot q_m \cdot N_{crypt} \cdot \overline{N_{gc}} \quad \text{on } \Gamma_m$$

$$\left(-\sigma_{sm}\nabla f_{sm} + f_{sm}u\right) \cdot n = f_{sm}u \cdot n \qquad \text{on } \Gamma_{out}$$

- qm is the mucus production rate per Goblet cell
- N_{gc} is the total number of Goblet cells per crypt
- · 20% of the total mucus produced corresponds to hm, 80% to sm
- n is the unit outward normal vector to ∂Ω_{colon}

Introduction	Mathematical Model	Numerical Methods	Results	Conclusions	References

Repulsive force

• A new **one-way repulsive force** between Bacteria and Hard Mucus was incorporated:

$$\begin{split} \partial_t f_i - \operatorname{div}(\sigma_i \nabla f_i) + \operatorname{div}(f_i \underline{u}_i) &= F_i \quad \text{in } \Omega_{colon} \\ \begin{cases} (-\sigma_i \nabla f_i + f_i u_i) \cdot n = -U_{\mathrm{in}} f_{i,\mathrm{in}} & \text{on } \Gamma_{\mathrm{in}} \\ (-\sigma_i \nabla f_i + f_i u_i) \cdot n = 0 & \text{on } \Gamma_m \\ (-\sigma_i \nabla f_i + f_i u_i) \cdot n = f_i u_i \cdot n & \text{on } \Gamma_{\mathrm{out}} \end{cases} \end{split}$$

$$u_i = u + \begin{bmatrix} U_r \\ 0 \end{bmatrix}, \quad U_r = C_{top} + \frac{C_{bot} - C_{top}}{1 + e^{-k(f_{hm} - thr)}}, \quad i \in Bact$$

• This force was **extended** to **all solid** components except mucus and liquid.

Coupling Colon-Crypt

COLON MODEL

$$-\sigma_{AMPs}\nabla c_{AMPs} + c_{AMPs}u \cdot n = -q_{AMPs} \cdot N_{crypt} \cdot \overline{N_{ent}}$$

+ q_{AMPs} is the diffusion of AMPs per Enterocyte

$$\left(-\sigma_{hm}\nabla f_{hm} + f_{hm}u_{hm}\right) \cdot n = -0.2 \cdot q_m \cdot N_{crypt} \cdot \overline{N_{gc}}$$

$$(-\sigma \nabla f_{sm} + f_{sm}u) \cdot n = -0.8 \cdot q_m \cdot N_{crypt} \cdot \overline{N_{gc}}$$

$$\left(-\sigma_{O_2}\nabla c_{O_2} + c_{O_2}u\right) \cdot n = -q_{O_2} \cdot c_{O_2}^{top} \cdot N_{crypt}$$

- c^{top}_{O2} is the oxygen concentration at the top of the crypt
- q_{O2} is the oxygen diffusion per crypt.

 $\left(\left(-\sigma \nabla f_l + f_l u \right) \cdot n = q_l \cdot N_{crypt} \cdot fl \cdot \overline{N_{ent}} \right)$

- ▶ q_l is the water pumping per Enterocyte cell
- $\overline{N_{ent}}$ is the total number of Enterocyte cells in one crypt

$$(-\sigma_j \nabla c_j + c_j u) \cdot n = q_j \cdot N_{crypt} \cdot \overline{N_{ent}} \cdot c_j$$
$$\tilde{c}_j (Z_{max}, t) = c_j(t) \quad \text{in } \Omega_{Crypt}$$

- ▶ $j \in \{la, ac, pro, but, H_2S\}$
- *c˜_j* is the concentration inside the crypt model

CRYPT MODEL 1

Process of Cell Migration

$$\begin{cases} \partial_t \rho_l - W \partial_z (\phi(z) \rho_l \partial_z \rho) &= H_l(\rho_{sc}, \rho_{pc}, D \times \rho, z), \\ \rho_l(0, t) &= \rho_l^{bot}, \\ \partial_z \rho_l(Z_{max}, t) &= 0, \end{cases}$$

where $l \in \{sc, dcs, pc, gc, ent\}$ is the cell type.

$$\begin{cases} \partial_t c_{O_2} - \sigma_{O_2} \partial_z z c_{O_2} = -\sum_{i \in \mathcal{M}} s_{O_2,i} \beta(c_i, c_{O_2}, c_{\text{but}}, c_{H_2S}^L, \rho_{gc} + \rho_{ent}), \\ \\ c_{O_2}(0, t) = c_{O_2}^{\text{bot}}, \\ \\ \partial_z c_{O_2}(Z_{\max}, t) = 0. \end{cases}$$

New Geometry

A new geometrical representation ⁵ of the colon was incorporated:

- the transition was handled, ensuring consistency and coherence,
- the model was adapted to the non-straight lateral wall Γ_m by recalibrating key parameters.

Colon with five haustral folds (black arrows)⁵.

Mesh obtained using Salome and Gmsh softwares.

F_{out}

 Γ_{in}

 Γ_m

Resolution scheme

Computational scheme for each time step:

- **1** The **crypt** model is solved.
- **2** The **colon** model is solved.
 - ADR equations for AMPs and O_2 are solved **separately** because:
 - their concentrations are orders of magnitude higher than those in the lumen,
 - they are **neither produced nor consumed** during reactions.
 - This separate resolution approach enhances convergence.

Numerical methods

The system of equations has been discretized and solved using the FEniCS framework 6 .

Numerical methods used:

- Crypt model: Explicit Kinetic Diffusive (EDK) Scheme.
 A regular discretization is adopted¹.
- Colon model: iterative Krylov solver with preconditioners. A triangular mesh with local refinement is adopted.

Colon mesh.

Introduction	Mathematical Model	Numerical Methods	Results ●0000	Conclusions	References

Velocity

Velocity with vector field representing flow direction and radial sections.

Introduction	Mathematical Model	Numerical Methods	Results ○●○○○	Conclusions	References

Soft Mucus

Soft Mucus distribution, with max value $\approx 8\cdot 10^{-2}$ and thickness ≈ 0.17 cm.

Introduction	Mathematical Model	Numerical Methods	Results 00●00	Conclusions	References

Hard Mucus

Hard Mucus distribution, constrained near Γ_m with a thickness ≈ 0.03 cm.

Comparison Soft - Hard

Comparison between Soft and Hard Mucus layer radial section normalized.

Introduction	Mathematical Model	Numerical Methods	Results ○○○○●	Conclusions	References

Bacteria

Monosaccharide-associated bacterial volume fraction and its radial section.

Conclusion

Conclusions:

- Successfully **coupled** macro² and micro¹-scale models.
- Successfully integrated **new biological features** and improved anatomical **accuracy**.
- **Results** are **consistent** with established biological knowledge and existing models^{1 2}.

Future perspectives:

- Enhance the computational efficiency by developing Model Order Reduction techniques and Sensitivity Analysis.
- Enable parameter estimation and biological data integration.
- This work lays the foundation for predictive, data-integrated model (digital twin) of the gut microbiota.

^[1] Haghebaert (2024), [2] Labarthe (2019).

Introduction	Mathematical Model	Numerical Methods	Results	Conclusions ○●	References

Thanks for the attention! Any questions?

Introduction	Mathematical Model	Numerical Methods	Results	Conclusions	References

References

- Marie Haghebaert et al. "A mechanistic modelling approach of the host-microbiota interactions to investigate beneficial symbiotic resilience in the human gut". In: *Journal of the Royal Society Interface* 21.215 (2024), p. 20230756.
- [²] Simon Labarthe et al. "A mathematical model to investigate the key drivers of the biogeography of the colon microbiota". In: *Journal of theoretical biology* 462 (2019), pp. 552–581.
- [³] Rafael Muñoz-Tamayo et al. "Mathematical modelling of carbohydrate degradation by human colonic microbiota". In: *Journal of theoretical biology* 266.1 (2010), pp. 189–201.
- [⁴] Léo Darrigade et al. "A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations". In: *Journal of Mathematical Biology* 84.7 (2022), p. 60.
- [⁵] Atalie C Thompson et al. "Taller haustral folds in the proximal colon: A potential factor contributing to interval colorectal cancer". In: *Journal of Colon* and Rectal Cancer 1.1 (2016), pp. 45–54.
- [⁶] Igor A Baratta et al. "DOLFINx: the next generation FEniCS problem solving environment". In: (2023).