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Introduction
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Biological context

The gut microbiota:

® plays a vital role in many
physiological processes,

® imbalance is linked to
numerous diseases,

® hosts more than 500
bacterial species.
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Biological representation of the main symbiotic mechanisms

[1] Haghebaert (2024).
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Objective

Establish a computational framework that integrates models at
different spatial scales to simulate host-gut microbiota symbiosis:

Enhance understanding, learning feedback

v |
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Geometry

Macroscopic  Microscopic

23
@ Colon model “: m
i
1

Cylindrical domain Qcojon C R3. .

By assuming axisymmetry in I z

cylindrical coordinates, the problem i <

is reduced to two dimensions. i - b n
® Crypt model *: i .

1D spatial domain Q¢ypr C R with /—i—\

each cell located at z € [0, Zmax]- Lomooc)

Assuming crypts are perfectly
synchronized, only one crypt per Lumen  Epithelium

section is modeled. Neypr: crypt density per surface unit.

[2] Labarthe (2019), [3] Mufioz-Tamayo (2010), [4] Darrigade (2022). 4
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Colon model

Mass conservation Hard Mucus Layer
O fi — div(o;V f;) + div(fius) = F; soLD A frm — div(0hm ™V fum) + div(famtnm) = Fam 10 Qeoton
(= 0iVfi+ fiws) -m=1y,
SE— (= OwmV fam + famUhm) -n =0 on Ty,
c; —div(o;Ve;) + div(cju) = . . ~
il ( Y V] . )] DISSOLVED (= 0hmV fam + frmtttm) -1 = =02 gpn - “Nge  only
— oV, cju)-n= ~
S i) (= ormV fam + famlUhm) -1 =0 on Loyt
Stokes model U, Abot — Atop
uhm = [l 5 Ua = Avop + T 5ty
1+ e F(Fnm—thr)
-V e(u)) + Vp=0 in Q.
(fo) () & . coton » thris the region of the domain where the concentration of hm
V-u=0 in Qeoton

is sufficient to prevent penetration

u-n=-U; on T
" - Soft Mucus Layer
U= s, + Upersr on Ty
icl. B fom — AiV(0emV fom) + div (fomtt) = Fom 10 Qeoton
Uz = Uper,z on Iy,
—pl+ g(u))-n=0 onT, .
e (— Can¥ fam + font) -1 = Ui faman oLy,
where () = £ (Vu+ VuT) (= @i 5 fm)) =0 = =M= Gty = W = on T,
() = max (e (fom (2, 2, 1)), mu(fil, 2,1)))] (= 0V fom + famtt) -1 = fomte -1 on Loy
> () = Hnmin + (n,max = Hm, ...m),,L > gmis the mucus production rate per Goblet cell
/; e i > Ngcis the total number of Goblet cells per crypt
» a(f1) = pmax — (Himax — '“‘I'm"‘)fmli;fm » 20% of the total mucus produced corresponds to hm, 80% to sm
Line + fi .

nis the unit outward normal vector to 0Qcoron
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Repulsive force

® A new one-way repulsive force between Bacteria and Hard
Mucus was incorporated:

atfi - le(U'LVfZ) r le(fz'liz) =F; in Qcolon
(—oiVfi + fivi) -n = —Uinfiin on iy

(=0iVfi+ fiui) -n=0 on T,
(—osVfi + fiws) -n = fiu; -n on Toyg

Ur
0

Cbot - Ctop

1T o Fnm—thr) i € Bact

ui:u+[ :|7 Ur:Ctop+

® This force was extended to all solid components except
mucus and liquid.
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Coupling Colon-Crypt

COLON MODEL

(* 0AMPsVCAMPs + CaMPst) - = —qamPs - Norypt - Nent)
+ qantps is the diffusion of AMPs per Enterocyte @* oVfi+ fru) - n =q - Nerypt - fl- Nent)

» g is the water pumping per Enterocyte cell
q_ ¥ Jrm & Trmtiion) 7. = —02-gm - Norgms - Ny ) » New is the total number of Enterocyte cells in one crypt

=0V fom + fomu) - = —0.8" Gm - Nerypt - Nyc
@ yp 9t

6— 0;V¢j +cju) = q; - Nerypt - New * w)
” - Ci(Zmaxst) = ¢j(t in Qe
(, 00,Veo, + 00_»“) ‘n=—qo, (‘:7)5 . ‘N“W’D i( ) i(t) Crypt

top . » j € {la.ac,pro.but, HyS
» 7 is the oxygen concentration at the top of the crypt J { P 25}

s P > ¢; is the concentration inside the crypt model
> qo, is the oxygen diffusion per crypt

CRYPT MODEL !

Process of Cell Migration Time Evolution of Oxygen
Aupr — WO(H(2)p02p) = Hipses ppes D X p, 2), Do, — 00,022€0, = = i p 502,iB(Ci, €Oy Couts Chiys Poc + Pent)s
2(0,1) = bot
0,%) = B,
0. Zya) =0, 0.0 = e
where / € {sc, dcs, pc, gc, ent} is the cell type. 0200y (Zinax; ) = 0.

[1] Haghebaert (2024).
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New Geometry

A new geometrical

. 5
representation = of the
colon was incorporated:

® the transition was handled,
ensuring consistency and
coherence,

® the model was adapted to
the non-straight lateral

T

wall T, by recalibrating key ~ Colon with five Mesh obtained using
arameters haustral folds . Salome and Gmsh
P . (black arrows) . softwares.

[5] Thompson (2016).



Numerical Methods
00

Resolution scheme

Computational scheme for each time step:

@ The crypt model is solved.

J @® The colon model is solved.
ADR equations for AMPs and O, are

solved separately because:
vt ADR 02 ® their concentrations are orders of

magnitude higher than those in the

y lumen,
ADR AMPs ® they are neither produced nor
J consumed during reactions.

m =) This separate resolution approach

enhances convergence.



Numerical Methods
oe

Numerical methods

The system of equations has been
discretized and solved using the FEniCS
framework °.

Numerical methods used:

e Crypt model: Explicit Kinetic
Diffusive (EDK) Scheme.
A regular discretization is adopted .

e Colon model: iterative Krylov
solver with preconditioners.
A triangular mesh with local
refinement is adopted.

Colon mesh.

[1] Haghebaert (2024), [6] Baratta (2023). 10
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Soft Mucus distribution, with max value =~ 8 - 1072 and thickness ~ 0.17 cm.
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Hard Mucus
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Hard Mucus distribution, constrained near I ,, with a thickness ~ 0.03 cm.
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Comparison Soft - Hard
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Bacteria
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Conclusion

Conclusions:
2 . 1
® Successfully coupled macro™ and micro -scale models.

® Successfully integrated new biological features and improved
anatomical accuracy.

® Results are consistent with established biological knowledge
and existing models te

Future perspectives:

® Enhance the computational efficiency by developing Model
Order Reduction techniques and Sensitivity Analysis.
® Enable parameter estimation and biological data integration.

=) This work lays the foundation for predictive, data-integrated
model (digital twin) of the gut microbiota.

[1] Haghebaert (2024), [2] Labarthe (2019).
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Thanks for the attention!
Any questions?
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