

Poster de recherche

Marion MEUTELET, Institut Denis Poisson - Orléans/Tours

Title : Nonlinear reaction-diffusion problem with membrane conditions

Let consider the domain $\Omega = \Omega_1 \cup \Omega_2 \subset R^2$ with internal interface Γ and boundary $\partial \Omega = \Gamma_1 \cup \Gamma_2$ where $\Gamma_1 = \partial \Omega_1 \setminus \Gamma$ and $\Gamma_2 = \partial \Omega_2 \setminus \Gamma$.

On the two domains $Q_T^1 := (0,T) \times \Omega_1$ and $Q_T^2 := (0,T) \times \Omega_2$, let consider a nonlinear reactiondiffusion membrane problem and I am interested in the effect of the membrane and its permeability realised by the interface conditions describing the crossing flux through Γ as

 $\nabla \varphi(u_1) \cdot n = \nabla \varphi(u_2) \cdot n = \varphi(u_2) - \varphi(u_1)$

where $u_i = u_i(t, x)$ represents a density in Ω_i and φ is a continuous and strictly increasing function. We observe that with $\varphi(x) = kx$, we obtain the so-called Kedem-Katchalsky conditions, widely used in biophysical contexts, where k is called permeability coefficient.

This work extends Giorgia Ciavolella's study on Kedem-Katchalsky conditions by generalizing the framework to nonlinear diffusion and interface conditions through a function φ .

To illustrate the behavior of the model and establish the existence of weak solutions, I use a finite volume numerical scheme.

References

- B. Andreianov and F. Bouhsiss. Uniqueness for an Elliptic-Parabolic Problem with Neumann Boundary Condition, Journal of Evolution Equations 4, no 2 (2004).
- A. Chaplain, J. Mark, C. Giverso, T. Lorenzi and L. Preziosi. Derivation and Application of Effective Interface Conditions for Continuum Mechanical Models of Cell Invasion through Thin Membranes. arXiv, 2019.
- G. Ciavolella, Reaction-Diffusion Equations with Membrane Conditions Describing Tumor Invasion, 2022.
- R. Eymard, T. Gallouet and R. Herbin. This Manuscript Is an Update of the Preprint N0 97-19 Du LATP, UMR 6632, Marseille, September 1997 Which Appeared in Handbook of Numerical Analysis, P.G. Ciarlet, J.L. Lions Eds, Vol 7, Pp 713-1020, 2006.
- O. Kedem and A. Katchalsky. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45.1 (1961), pp. 143–179.