Eyring-Kramers law for the underdamped Langevin process

Mouad Ramil (INRIA Rennes)

In collaboration with Seungwoo Lee, Insuk Seo (Seoul National University)

Minisymposium "Echantillonnage et métastabilité II" (June 5, 2025)

would Ramii (INRIA Rennes

1/24

Eyring-Kramers law in the elliptic and reversible setting

- Potential theory
- Scheme of proof

Serving-Kramers law in a non-reversible and non-elliptic setting

- Extension of the potential theory
- Scheme of proof

э

イロト イヨト イヨト

• Molecular dynamics: Biology, Chemistry, Material science and applications in Nuclear physics.

2

- Molecular dynamics: Biology, Chemistry, Material science and applications in Nuclear physics.
- Examples:

э

< □ > < □ > < □ > < □ > < □ >

- Molecular dynamics: Biology, Chemistry, Material science and applications in Nuclear physics.
- Examples:

Folding of a protein

Liquid-solid phase transition

э

< □ > < □ > < □ > < □ > < □ >

Underdamped Langevin process

Consider N particles with unitary mass described by their position $q_t = (q_t^1, \ldots, q_t^N) \in \mathbb{R}^{3N}$ and velocity $p_t = (p_t^1, \ldots, p_t^N) \in \mathbb{R}^{3N}$ at a constant temperature $\epsilon > 0$.

э

Underdamped Langevin process

Consider N particles with unitary mass described by their position $q_t = (q_t^1, \ldots, q_t^N) \in \mathbb{R}^{3N}$ and velocity $p_t = (p_t^1, \ldots, p_t^N) \in \mathbb{R}^{3N}$ at a constant temperature $\epsilon > 0$.

Newton equation + Thermostat:

$$\begin{cases} \mathrm{d}q_t = p_t \mathrm{d}t, \\ \mathrm{d}p_t = -\nabla U(q_t) \mathrm{d}t - \gamma p_t \mathrm{d}t + \sqrt{2\gamma\epsilon} \mathrm{d}B_t \end{cases}$$

where

- $U: \mathbb{R}^{3N} \to \mathbb{R}$ is the interaction potential,
- $\gamma > 0$ is the *friction coefficient*,
- $(B_t)_{t\geq 0}$ is the Brownian motion accounting for the random thermal fluctuations.

Underdamped Langevin process

Consider N particles with unitary mass described by their position $q_t = (q_t^1, \ldots, q_t^N) \in \mathbb{R}^{3N}$ and velocity $p_t = (p_t^1, \ldots, p_t^N) \in \mathbb{R}^{3N}$ at a constant temperature $\epsilon > 0$.

Newton equation + Thermostat:

$$\begin{cases} \mathrm{d}q_t = p_t \mathrm{d}t, \\ \mathrm{d}p_t = -\nabla U(q_t) \mathrm{d}t - \gamma p_t \mathrm{d}t + \sqrt{2\gamma\epsilon} \mathrm{d}B_t \end{cases}$$

where

- $U: \mathbb{R}^{3N} \to \mathbb{R}$ is the interaction potential,
- $\gamma > 0$ is the *friction coefficient*,
- $(B_t)_{t>0}$ is the Brownian motion accounting for the random thermal fluctuations.

Numerical sampling : Approach $(\tilde{q}_{n\Delta t}, \tilde{p}_{n\Delta t})$ using a numerical scheme

$$\left(\tilde{q}_{(n+1)\Delta t},\tilde{p}_{(n+1)\Delta t}\right)=\Phi_{\Delta_t}\left(\tilde{q}_{n\Delta t},\tilde{p}_{n\Delta t}\right)$$

where Δt is the timestep.

4/24

Let τ be the transition time Phase $1 \rightarrow$ Phase 2.

2

Let τ be the transition time Phase $1 \rightarrow$ Phase 2.

• Metastability : The transition timescale ($\tau \gtrsim 10^{-6}$ s) is <u>much higher</u> than the microscopic fluctuations timescale ($\Delta t \simeq 10^{-15}$ s).

э

< □ > < □ > < □ > < □ > < □ >

Let τ be the transition time Phase $1 \rightarrow$ Phase 2.

- Metastability : The transition timescale ($\tau \gtrsim 10^{-6}$ s) is <u>much higher</u> than the microscopic fluctuations timescale ($\Delta t \simeq 10^{-15}$ s).
- Happens when the temperature ϵ is small (small amplitude of the Brownian motion).

< □ > < □ > < □ > < □ > < □ >

Let τ be the transition time Phase $1 \rightarrow$ Phase 2.

- Metastability : The transition timescale ($\tau \gtrsim 10^{-6}$ s) is <u>much higher</u> than the microscopic fluctuations timescale ($\Delta t \simeq 10^{-15}$ s).
- Happens when the temperature ϵ is small (small amplitude of the Brownian motion).
- Sample the phase transition Phase $1 \rightarrow$ Phase 2 = Sample a rare event of the evolution of the system.

イロト イヨト イヨト

Let τ be the transition time Phase $1 \rightarrow$ Phase 2.

- Metastability : The transition timescale ($\tau \gtrsim 10^{-6}$ s) is <u>much higher</u> than the microscopic fluctuations timescale ($\Delta t \simeq 10^{-15}$ s).
- Happens when the temperature ϵ is small (small amplitude of the Brownian motion).
- Sample the phase transition Phase $1 \rightarrow$ Phase 2 = Sample a rare event of the evolution of the system.

Question : What is the exact asymptotic of the average transition time when ϵ is small?

イロト イヨト イヨト

Eyring-Kramers law in the elliptic and reversible setting Potential theory

Scheme of proof

Eyring-Kramers law in a non-reversible and non-elliptic setting

- Extension of the potential theory
- Scheme of proof

э

< □ > < □ > < □ > < □ > < □ >

Equilibrium potential

Let \mathcal{M}, \mathcal{S} be bounded C^2 sets of \mathbb{R}^n .

The equilibrium potential $h^{\epsilon}_{\mathcal{M},\,\mathcal{S}}$ is defined as the solution to

$$egin{aligned} &\mathcal{L}_\epsilon \; h^\epsilon_{\mathcal{M},\,\mathcal{S}}(x) = 0, & x \in \Omega \;, \ &h^\epsilon_{\mathcal{M},\,\mathcal{S}}(x) = 1, & x \in \partial \mathcal{M} \;, \ &h^\epsilon_{\mathcal{M},\,\mathcal{S}}(x) = 0, & x \in \partial \mathcal{S} \;, \end{aligned}$$

where $\mathcal{L}_{\epsilon} = -\nabla U \cdot \nabla + \epsilon \Delta$.

2

7/24

Equilibrium potential

Let \mathcal{M}, \mathcal{S} be bounded C^2 sets of \mathbb{R}^n .

The equilibrium potential $h^{\epsilon}_{\mathcal{M},\,\mathcal{S}}$ is defined as the solution to

$$egin{aligned} &\mathcal{L}_\epsilon \ h^\epsilon_{\mathcal{M},\,\mathcal{S}}(x) = 0, & x \in \Omega \ , \ &h^\epsilon_{\mathcal{M},\,\mathcal{S}}(x) = 1, & x \in \partial \mathcal{M} \ , \ &h^\epsilon_{\mathcal{M},\,\mathcal{S}}(x) = 0, & x \in \partial \mathcal{S} \ , \end{aligned}$$

where $\mathcal{L}_{\epsilon} = -\nabla U \cdot \nabla + \epsilon \Delta$.

Interpretation:

- Metal plates attached to a battery imposing a constant voltage,
- **2** $h_{\mathcal{M},S}^{\epsilon}$ is the electrostatic potential at equilibrium on Ω .

Probabilistic representation

Let $(X_t^{\epsilon})_{t>0}$ be the **overdamped Langevin process** in \mathbb{R}^n solution to

$$\mathrm{d}X_t^\epsilon = -\nabla U(X_t^\epsilon)\mathrm{d}t + \sqrt{2\epsilon}\mathrm{d}B_t$$

which infinitesimal generator is \mathcal{L}_{ϵ} .

Let $\tau_{\mathcal{C}}^{\epsilon} := \inf\{t > 0 : X_t^{\epsilon} \in \mathcal{C}\}$, then

$$h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) = \mathbb{P}_{x}(\tau^{\epsilon}_{\mathcal{M}} < \tau^{\epsilon}_{\mathcal{S}}) \;.$$

2

イロン イ団 とく ヨン イヨン

Probabilistic representation

Let $(X_t^{\epsilon})_{t\geq 0}$ be the **overdamped Langevin process** in \mathbb{R}^n solution to

$$\mathrm{d}X_t^\epsilon = -\nabla U(X_t^\epsilon)\mathrm{d}t + \sqrt{2\epsilon}\mathrm{d}B_t$$

which infinitesimal generator is \mathcal{L}_{ϵ} .

Let $\tau_{\mathcal{C}}^{\epsilon} := \inf\{t > 0 : X_t^{\epsilon} \in \mathcal{C}\}$, then

$$h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) = \mathbb{P}_{x}(\tau^{\epsilon}_{\mathcal{M}} < \tau^{\epsilon}_{\mathcal{S}})$$
.

Invariant measure: The process $(X_t^{\epsilon})_{t\geq 0}$ admits the Gibbs invariant probability distribution:

$$\mathrm{d}\mu_{\epsilon}(x) = \frac{1}{Z_{\epsilon}} \mathrm{e}^{-U(x)/\epsilon} \mathrm{d}x$$

where Z_{ϵ} is the normalizing constant.

2

Equilibrium measure

The equilibrium measure is defined as:

$$\nu_{\mathcal{M},\mathcal{S}}^{\epsilon}(\mathrm{d} x) = \epsilon \nabla h_{\mathcal{M},\mathcal{S}}^{\epsilon} \cdot n_{\mathcal{M}}(x) \,\sigma(\mathrm{d} x) \,,$$

where σ is the surface measure, $n_{\mathcal{M}}$ is the unitary inward normal vector on $\partial \mathcal{M}$. The *capacity* is defined as:

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, S) = \int_{\partial \mathcal{M}} \nu_{\mathcal{M}, S}^{\epsilon}(\mathrm{d}x) .$$

2

Equilibrium measure

The equilibrium measure is defined as:

$$\nu_{\mathcal{M},\mathcal{S}}^{\epsilon}(\mathrm{d} x) = \epsilon \nabla h_{\mathcal{M},\mathcal{S}}^{\epsilon} \cdot n_{\mathcal{M}}(x) \,\sigma(\mathrm{d} x) \,,$$

where σ is the surface measure, $n_{\mathcal{M}}$ is the unitary inward normal vector on $\partial \mathcal{M}$. The *capacity* is defined as:

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, S) = \int_{\partial \mathcal{M}} \nu_{\mathcal{M}, S}^{\epsilon}(\mathrm{d}x) .$$

By the divergence theorem,

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, S) = \epsilon \int_{\Omega} \left| \nabla h_{\mathcal{M}, S}^{\epsilon}(x) \right|^{2} \mu_{\epsilon}(\mathrm{d}x) .$$

2

Equilibrium measure

The equilibrium measure is defined as:

$$\nu_{\mathcal{M},\mathcal{S}}^{\epsilon}(\mathrm{d} x) = \epsilon \nabla h_{\mathcal{M},\mathcal{S}}^{\epsilon} \cdot n_{\mathcal{M}}(x) \,\sigma(\mathrm{d} x) \,,$$

where σ is the surface measure, $n_{\mathcal{M}}$ is the unitary inward normal vector on $\partial \mathcal{M}$. The *capacity* is defined as:

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, S) = \int_{\partial \mathcal{M}} \nu_{\mathcal{M}, S}^{\epsilon}(\mathrm{d}x) \ .$$

By the divergence theorem,

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, S) = \epsilon \int_{\Omega} \left| \nabla h^{\epsilon}_{\mathcal{M}, S}(x) \right|^{2} \mu_{\epsilon}(\mathrm{d}x) .$$

Interpretation:

- $\nu_{\mathcal{M},S}^{\epsilon}$ is the distribution of charge at the surface of \mathcal{M} ,
- ${}^{{}_{{}^{{}_{{}^{{}_{{}^{}}}}}}}$ (\mathcal{M}, \mathcal{S}) is the *total charge* on the plate \mathcal{M} .
- \bigcirc cap_e(\mathcal{M}, \mathcal{S}) is also equal to the *total electrostatic energy* on Ω .

Identity

Let f be a smooth function in \mathbb{R}^n vanishing on ∂S . Then,

$$\begin{split} \int_{\partial \mathcal{M}} f(x) \, \nu_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(\mathrm{d}x) &= \int_{\partial \mathcal{M}} f(x) \, \nabla h_{\mathcal{M},\,\mathcal{S}}^{\epsilon} \cdot n_{\mathcal{M}}(x) \, \sigma(\mathrm{d}x) \\ &= \int_{\Omega} f(x) \underbrace{\mathcal{L}_{\epsilon} h_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(x)}_{=0} \, \mu_{\epsilon}(\mathrm{d}x) + \int_{\Omega} \nabla f(x) \cdot \nabla h_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(x) \, \mu_{\epsilon}(\mathrm{d}x) \\ &= \int_{\mathbb{R}^{n}} h_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(x) \left(-\mathcal{L}_{\epsilon} f(x)\right) \mu_{\epsilon}(\mathrm{d}x) \, . \end{split}$$

2

Identity

Let f be a smooth function in \mathbb{R}^n vanishing on ∂S . Then,

$$\begin{split} \int_{\partial \mathcal{M}} f(x) \, \nu_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(\mathrm{d}x) &= \int_{\partial \mathcal{M}} f(x) \, \nabla h_{\mathcal{M},\,\mathcal{S}}^{\epsilon} \cdot n_{\mathcal{M}}(x) \, \sigma(\mathrm{d}x) \\ &= \int_{\Omega} f(x) \underbrace{\mathcal{L}_{\epsilon} h_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(x)}_{=0} \, \mu_{\epsilon}(\mathrm{d}x) + \int_{\Omega} \nabla f(x) \cdot \nabla h_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(x) \, \mu_{\epsilon}(\mathrm{d}x) \\ &= \int_{\mathbb{R}^{n}} h_{\mathcal{M},\,\mathcal{S}}^{\epsilon}(x) \left(-\mathcal{L}_{\epsilon} f(x)\right) \mu_{\epsilon}(\mathrm{d}x) \, . \end{split}$$

Defining $f(x) = \mathbb{E}_x[\tau_S^{\epsilon}]$, there exists a probability measure $\theta_{\mathcal{M},S}^{\epsilon}$ on $\partial \mathcal{M}$ such that

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \, \theta_{\mathcal{M}, \, \mathcal{S}}^{\epsilon}(\mathrm{d}x) = \frac{1}{\operatorname{cap}_{\epsilon}(\mathcal{M}, \, \mathcal{S})} \int_{\mathbb{R}^{n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon}(x) \, \mu_{\epsilon}(\mathrm{d}x) \, ,$$
since $\mathcal{L}_{\epsilon}f = -1$.

2

ヘロト ヘロト ヘヨト ヘヨト

Eyring-Kramers law in the elliptic and reversible setting

- Potential theory
- Scheme of proof

Eyring-Kramers law in a non-reversible and non-elliptic setting

- Extension of the potential theory
- Scheme of proof

Mouad Ramil	(INRIA Rennes)
-------------	----------------

э

< □ > < □ > < □ > < □ > < □ >

Assumption : U is a C^2 Morse function.

Double well potential.

Let $\mathcal{M} = B(m, \epsilon)$ and $\mathcal{S} = B(s, \epsilon)$.

Eyring-Kramers law: Asymptotics of $\mathbb{E}_m[\tau_S^{\epsilon}]$ when $\epsilon \to 0$?

2

Assumption : U is a C^2 Morse function.

Double well potential.

Let $\mathcal{M} = B(m, \epsilon)$ and $\mathcal{S} = B(s, \epsilon)$.

Eyring-Kramers law: Asymptotics of $\mathbb{E}_m[\tau_S^{\epsilon}]$ when $\epsilon \to 0$?

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon}(\mathrm{d} x) = \frac{1}{\operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon}(x) \mu_{\epsilon}(\mathrm{d} x) .$$

æ

Assumption : U is a C^2 Morse function.

Double well potential.

Let $\mathcal{M} = B(m, \epsilon)$ and $\mathcal{S} = B(s, \epsilon)$.

Eyring-Kramers law: Asymptotics of $\mathbb{E}_m[\tau_S^{\epsilon}]$ when $\epsilon \to 0$?

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon}(\mathrm{d} x) = \frac{1}{\operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon}(x) \mu_{\epsilon}(\mathrm{d} x) .$$

• For $x \in \partial \mathcal{M}$, $\mathbb{E}_x[\tau_{\mathcal{S}}^{\epsilon}] \simeq \mathbb{E}_m[\tau_{\mathcal{S}}^{\epsilon}]$.

э

Assumption : U is a C^2 Morse function.

Double well potential.

Let $\mathcal{M} = B(m, \epsilon)$ and $\mathcal{S} = B(s, \epsilon)$.

Eyring-Kramers law: Asymptotics of $\mathbb{E}_m[\tau_S^{\epsilon}]$ when $\epsilon \to 0$?

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon}(\mathrm{d} x) = \frac{1}{\operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon}(x) \mu_{\epsilon}(\mathrm{d} x) .$$

• For $x \in \partial \mathcal{M}$, $\mathbb{E}_x[\tau_{\mathcal{S}}^{\epsilon}] \simeq \mathbb{E}_m[\tau_{\mathcal{S}}^{\epsilon}]$.

 $\ \, {\it left} h^{\epsilon}_{{\mathcal M},\,{\mathcal S}}(x) \simeq \mathbb{1}_{{\rm first well}(x)} \; .$

э

Assumption : U is a C^2 Morse function.

Double well potential.

Let $\mathcal{M} = B(m, \epsilon)$ and $\mathcal{S} = B(s, \epsilon)$.

Eyring-Kramers law: Asymptotics of $\mathbb{E}_m[\tau_S^{\epsilon}]$ when $\epsilon \to 0$?

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon}(\mathrm{d} x) = \frac{1}{\operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon}(x) \mu_{\epsilon}(\mathrm{d} x) .$$

• For $x \in \partial \mathcal{M}$, $\mathbb{E}_x[\tau_{\mathcal{S}}^{\epsilon}] \simeq \mathbb{E}_m[\tau_{\mathcal{S}}^{\epsilon}]$.

- $h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) \simeq \mathbb{1}_{\text{first well}(x)} \ .$
- Oirichlet principle:

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S}) = \epsilon \inf \left\{ \int_{\mathbb{R}^{2d}} |\nabla f(x)|^2 \mathrm{e}^{-U(x)/\epsilon} \mathrm{d}x, \quad f = 1 \text{ on } \partial \mathcal{M}, \ f = 0 \text{ on } \partial \mathcal{S} \right\}.$$

Capacity computation

Let $\delta = \sqrt{\epsilon \log(1/\epsilon)}$. Define

$$\widehat{f}(x) = rac{1}{\int_{-\delta}^{\delta} \mathrm{e}^{-rac{\lambda_1^{\sigma}}{2\epsilon}t^2} \mathrm{d}t} \int_{-\delta}^{\langle x, \, \mathbf{e}_1
angle} \mathrm{e}^{-rac{\lambda_1^{\sigma}}{2\epsilon}t^2} \mathrm{d}t \, ,$$

which is solution to the linearized operator $\widehat{\mathcal{L}} = -\mathbb{H}^{\sigma}x \cdot \nabla + \epsilon \Delta$ when $x \simeq \sigma$.

2

Capacity computation

Let $\delta = \sqrt{\epsilon \log(1/\epsilon)}$. Define

$$\widehat{f}(x) = \frac{1}{\int_{-\delta}^{\delta} \mathrm{e}^{-\frac{\lambda_1^{\sigma}}{2\epsilon}t^2} \mathrm{d}t} \int_{-\delta}^{\langle x, e_1 \rangle} \mathrm{e}^{-\frac{\lambda_1^{\sigma}}{2\epsilon}t^2} \mathrm{d}t \; ,$$

which is solution to the **linearized operator** $\hat{\mathcal{L}} = -\mathbb{H}^{\sigma}x \cdot \nabla + \epsilon\Delta$ when $x \simeq \sigma$. Let f be the test function satisfying

where the colored zones are connected components of $\{U(x) \le U(\sigma) + \delta^2\}$.

ヘロト ヘロト ヘヨト ヘヨト

э

Theorem (Overdamped Langevin process)

Let \mathbb{H}^m (resp. \mathbb{H}^{σ}) be the Hessian of U on m (resp. σ). Then,

$$\mathbb{E}_m(au^\epsilon_\mathcal{S}) = (1+o_\epsilon(1))rac{2\pi}{\lambda_1^\sigma}\sqrt{rac{-\det\mathbb{H}^\sigma}{\det\mathbb{H}^m}}\exp\left(rac{U(\sigma)-U(m)}{\epsilon}
ight),$$

where $-\lambda_1^{\sigma}$ is the unique negative eigenvalue of \mathbb{H}^{σ} .

2

Theorem (Overdamped Langevin process)

Let \mathbb{H}^m (resp. \mathbb{H}^{σ}) be the Hessian of U on m (resp. σ). Then,

$$\mathbb{E}_m(au^\epsilon_\mathcal{S}) = (1 + o_\epsilon(1)) rac{2\pi}{\lambda_1^\sigma} \sqrt{rac{-\det \mathbb{H}^\sigma}{\det \mathbb{H}^m}} \exp\left(rac{U(\sigma) - U(m)}{\epsilon}
ight),$$

where $-\lambda_1^{\sigma}$ is the unique negative eigenvalue of \mathbb{H}^{σ} .

This law was extended in [Lee-Seo, PTRF, 2021] for elliptic and non-reversible diffusion processes satisfying

$$\mathrm{d}X_t^\epsilon = -(\nabla U(X_t^\epsilon) + \ell(X_t^\epsilon))\mathrm{d}t + \sqrt{2\epsilon}\mathrm{d}B_t \; ,$$

such that for all $x \in \mathbb{R}^n$,

$$\nabla U(x) \cdot \ell(x) = 0, \qquad (\nabla \cdot \ell)(x) = 0.$$

Remarks:

- μ_{ϵ} remains invariant,
- $-\lambda_1^\sigma$ is replaced by the unique negative eigenvalue $-\mu_1^\sigma$ of $\mathbb{H}^\sigma + D\mathbb{L}^\sigma$,
- \widehat{f} does not satisfy the same boundary conditions.

э

2 Eyring-Kramers law in the elliptic and reversible setting

- Potential theory
- Scheme of proof

Serving-Kramers law in a non-reversible and non-elliptic setting

- Extension of the potential theory
- Scheme of proof

Mouad Ramil	(INRIA Rennes)
-------------	----------------

э

< □ > < □ > < □ > < □ > < □ >

Non-elliptic and non-reversible setting

Consider the underdamped Langevin process

$$\begin{cases} \mathrm{d}q_t^\epsilon = p_t^\epsilon \mathrm{d}t, \\ \mathrm{d}p_t^\epsilon = -\nabla U(q_t^\epsilon) \mathrm{d}t - \gamma p_t^\epsilon \mathrm{d}t + \sqrt{2\gamma\epsilon} \mathrm{d}B_t. \end{cases}$$

Its infinitesimal generator is the kinetic Fokker-Planck operator

$$\mathcal{L}_{\epsilon} = \langle \pmb{p}, \,
abla_{\pmb{q}}
angle - \langle
abla \pmb{U}(\pmb{q}), \,
abla_{\pmb{p}}
angle - \gamma \langle \pmb{p}, \,
abla_{\pmb{p}}
angle + \epsilon \Delta_{\pmb{p}}.$$

2

Non-elliptic and non-reversible setting

Consider the underdamped Langevin process

$$\begin{cases} \mathrm{d} \boldsymbol{q}_t^{\epsilon} = \boldsymbol{p}_t^{\epsilon} \mathrm{d} t, \\ \mathrm{d} \boldsymbol{p}_t^{\epsilon} = -\nabla \boldsymbol{U}(\boldsymbol{q}_t^{\epsilon}) \mathrm{d} t - \gamma \boldsymbol{p}_t^{\epsilon} \mathrm{d} t + \sqrt{2\gamma \epsilon} \mathrm{d} \boldsymbol{B}_t. \end{cases}$$

Its infinitesimal generator is the kinetic Fokker-Planck operator

$$\mathcal{L}_{\epsilon} = \langle p, \nabla_{q} \rangle - \langle \nabla U(q), \nabla_{p} \rangle - \gamma \langle p, \nabla_{p} \rangle + \epsilon \Delta_{p}.$$

Its invariant measure is given by

$$\mathrm{d}\mu_{\epsilon}(\boldsymbol{q},\,\boldsymbol{p}) = rac{1}{Z_{\epsilon}}\mathrm{e}^{-V(\boldsymbol{q},\,\boldsymbol{p})/\epsilon}\mathrm{d}\boldsymbol{q}\mathrm{d}\boldsymbol{p}\;,$$

where $V(q, p) = U(q) + |p|^2/2$ and Z_{ϵ} is the normalizing factor.

Notation: Let

$$\mathcal{M} = B((m, 0), \epsilon), \qquad \mathcal{S} = B((s, 0), \epsilon).$$

э

16/24

Capacity

Difficulties:

- $\ \, \bullet \ \, \mathcal{L}_{\epsilon} \ \, \text{is not reversible.}$
- (a) The equilibrium measure, thus the capacity are ill-defined because of the non-ellipticity.
- The Dirichlet principle is an open question with recent advancements [Albritton-Armstrong-Mourrat-Novack, 2025].

э

Capacity

Difficulties:

- $\ \, {\cal L}_{\epsilon} \ \, {\rm is \ not \ reversible}.$
- (2) The equilibrium measure, thus the capacity are ill-defined because of the non-ellipticity.
- The Dirichlet principle is an open question with recent advancements [Albritton-Armstrong-Mourrat-Novack, 2025].

Idea inspired from [Bovier-den Hollander, 2015], [Lee-Seo, PTRF, 2021]: Let f be a smooth function in \mathbb{R}^n satisfying f = 1 on $\partial \mathcal{M}$ and f = 0 on ∂S . By integration by parts (to be justified),

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S}) = \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon}(x) \left(-\mathcal{L}_{\epsilon}^{*}f(x)\right) \mu_{\epsilon}(\mathrm{d}x) ,$$

where \mathcal{L}_{ϵ}^* is the adjoint of \mathcal{L}_{ϵ} on $\mu_{\epsilon}(dx)$, i.e.

$$\mathcal{L}^*_\epsilon = -\langle p, \,
abla_q
angle + \langle
abla U(q), \,
abla_p
angle - \gamma \langle p, \,
abla_p
angle + \epsilon \Delta_p \; .$$

э

Potential theory

Equilibrium measure: We show the existence of a non-negative measure $\nu_{\mathcal{M},S}^{\epsilon}$ on $\partial \mathcal{M}$ such that for all smooth test functions satisfying f = 0 on ∂S ,

$$\int_{\mathbb{R}^{2n}} h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) \left(-\mathcal{L}^{*}_{\epsilon}f(x)\right) \mu_{\epsilon}(\mathrm{d} x) = \int_{\partial \mathcal{M}} f(x) \, \nu^{\epsilon}_{\mathcal{M}, \mathcal{S}}(\mathrm{d} x) \; .$$

2

Potential theory

Equilibrium measure: We show the existence of a non-negative measure $\nu_{\mathcal{M},S}^{\epsilon}$ on $\partial \mathcal{M}$ such that for all smooth test functions satisfying f = 0 on ∂S ,

$$\int_{\mathbb{R}^{2n}} h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) \left(-\mathcal{L}^{*}_{\epsilon} f(x)\right) \mu_{\epsilon}(\mathrm{d} x) = \int_{\partial \mathcal{M}} f(x) \nu^{\epsilon}_{\mathcal{M}, \mathcal{S}}(\mathrm{d} x) \ .$$

Capacity: Additionally, if f = 1 on $\partial \mathcal{M}$,

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, S) = \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, S}^{\epsilon}(x) \left(-\mathcal{L}_{\epsilon}^{*}f(x)\right) \mu_{\epsilon}(\mathrm{d}x) \ .$$

It is **independent** of the choice of *f*.

Potential theory

Equilibrium measure: We show the existence of a non-negative measure $\nu_{\mathcal{M},S}^{\epsilon}$ on $\partial \mathcal{M}$ such that for all smooth test functions satisfying f = 0 on ∂S ,

$$\int_{\mathbb{R}^{2n}} h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) \left(-\mathcal{L}^{*}_{\epsilon} f(x)\right) \mu_{\epsilon}(\mathrm{d} x) = \int_{\partial \mathcal{M}} f(x) \nu^{\epsilon}_{\mathcal{M}, \mathcal{S}}(\mathrm{d} x) \ .$$

Capacity: Additionally, if f = 1 on $\partial \mathcal{M}$,

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, S) = \int_{\mathbb{R}^{2n}} h^{\epsilon}_{\mathcal{M}, S}(x) \left(-\mathcal{L}^{*}_{\epsilon}f(x)\right) \mu_{\epsilon}(\mathrm{d}x) \ .$$

It is **independent** of the choice of *f*.

The first step of the proof then consists in showing that

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon}(\mathrm{d}x) = \frac{1}{\mathrm{cap}_{\epsilon}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon}(x) \mu_{\epsilon}(\mathrm{d}x) ,$$

where $\theta_{\mathcal{M}, \mathcal{S}}^{\epsilon} = \nu_{\mathcal{M}, \mathcal{S}}^{\epsilon} / \operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S}).$

э

2 Eyring-Kramers law in the elliptic and reversible setting

- Potential theory
- Scheme of proof

Eyring-Kramers law in a non-reversible and non-elliptic setting

- Extension of the potential theory
- Scheme of proof

э

< □ > < □ > < □ > < □ > < □ >

Consider the process $(X^{\epsilon,\,lpha}_t=(q^{\epsilon,\,lpha}_t,\,p^{\epsilon,\,lpha}_t))_{t\geq 0}$

$$\begin{cases} \mathrm{d}\boldsymbol{q}_{t}^{\epsilon,\,\alpha} = \boldsymbol{p}_{t}^{\epsilon,\,\alpha} \mathrm{d}t - \alpha \nabla \boldsymbol{U}(\boldsymbol{q}_{t}^{\epsilon,\,\alpha}) \mathrm{d}t + \sqrt{2\alpha\epsilon} \mathrm{d}\tilde{\boldsymbol{B}}_{t}, \\ \mathrm{d}\boldsymbol{p}_{t}^{\epsilon,\,\alpha} = -\nabla \boldsymbol{U}(\boldsymbol{q}_{t}^{\epsilon,\,\alpha}) \mathrm{d}t - \gamma \boldsymbol{p}_{t}^{\epsilon,\,\alpha} \mathrm{d}t + \sqrt{2\gamma\epsilon} \mathrm{d}\boldsymbol{B}_{t} \end{cases}$$

where $(B_t)_{t\geq 0}$, $(\tilde{B}_t)_{t\geq 0}$ are independent Brownian motions.

Its infinitesimal generator $\mathcal{L}_{\epsilon, \alpha}$ is given by

$$\mathcal{L}_{\epsilon, \alpha} = \mathcal{L}_{\epsilon} - \alpha \langle \nabla U(q), \nabla_q \rangle + \alpha \epsilon \Delta_q$$

Consider the process $(X_t^{\epsilon,\,lpha}=(q_t^{\epsilon,\,lpha},\,p_t^{\epsilon,\,lpha}))_{t\geq 0}$

$$\begin{cases} \mathrm{d}\boldsymbol{q}_{t}^{\epsilon,\,\alpha} = \boldsymbol{p}_{t}^{\epsilon,\,\alpha} \mathrm{d}t - \alpha \nabla \boldsymbol{U}(\boldsymbol{q}_{t}^{\epsilon,\,\alpha}) \mathrm{d}t + \sqrt{2\alpha\epsilon} \mathrm{d}\tilde{\boldsymbol{B}}_{t}, \\ \mathrm{d}\boldsymbol{p}_{t}^{\epsilon,\,\alpha} = -\nabla \boldsymbol{U}(\boldsymbol{q}_{t}^{\epsilon,\,\alpha}) \mathrm{d}t - \gamma \boldsymbol{p}_{t}^{\epsilon,\,\alpha} \mathrm{d}t + \sqrt{2\gamma\epsilon} \mathrm{d}\boldsymbol{B}_{t} \end{cases}$$

where $(B_t)_{t\geq 0}$, $(\tilde{B}_t)_{t\geq 0}$ are independent Brownian motions.

Its infinitesimal generator $\mathcal{L}_{\epsilon, \alpha}$ is given by

$$\mathcal{L}_{\epsilon, \alpha} = \mathcal{L}_{\epsilon} - lpha \langle
abla U(q), \nabla_q
angle + lpha \epsilon \Delta_q.$$

Properties:

- The process $(X_t^{\epsilon, \alpha})_{t>0}$ is elliptic and non-reversible,
- Its invariant measure is also μ_ε.

<ロ> <四> <四> <四> <三</p>

Consider the process $(X^{\epsilon,\,lpha}_t=(q^{\epsilon,\,lpha}_t,\,p^{\epsilon,\,lpha}_t))_{t\geq 0}$

$$\begin{cases} \mathrm{d}\boldsymbol{q}_{t}^{\epsilon,\,\alpha} = \boldsymbol{p}_{t}^{\epsilon,\,\alpha} \mathrm{d}t - \alpha \nabla \boldsymbol{U}(\boldsymbol{q}_{t}^{\epsilon,\,\alpha}) \mathrm{d}t + \sqrt{2\alpha\epsilon} \mathrm{d}\tilde{\boldsymbol{B}}_{t}, \\ \mathrm{d}\boldsymbol{p}_{t}^{\epsilon,\,\alpha} = -\nabla \boldsymbol{U}(\boldsymbol{q}_{t}^{\epsilon,\,\alpha}) \mathrm{d}t - \gamma \boldsymbol{p}_{t}^{\epsilon,\,\alpha} \mathrm{d}t + \sqrt{2\gamma\epsilon} \mathrm{d}\boldsymbol{B}_{t} \end{cases}$$

where $(B_t)_{t\geq 0}$, $(\tilde{B}_t)_{t\geq 0}$ are independent Brownian motions.

Its infinitesimal generator $\mathcal{L}_{\epsilon, \alpha}$ is given by

$$\mathcal{L}_{\epsilon, \alpha} = \mathcal{L}_{\epsilon} - \alpha \langle \nabla U(q), \nabla_q \rangle + \alpha \epsilon \Delta_q.$$

Properties:

- The process $(X_t^{\epsilon, \alpha})_{t \ge 0}$ is elliptic and non-reversible,
- Its invariant measure is also μ_ε.

As a result,

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon, \alpha}] \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(\mathrm{d}x) = \frac{1}{\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(x) \, \mu_{\epsilon}(\mathrm{d}x) \, ,$$

Objective: Take the limit $\alpha \rightarrow 0$.

э

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon, \alpha} \wedge M] \, \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(\mathrm{d} x) = \frac{1}{\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(x) \, \mathbb{P}_{x}(\tau_{\mathcal{S}}^{\epsilon, \alpha} \leq M) \, \mu_{\epsilon}(\mathrm{d} x) \, ,$$

Objective: Take $\alpha \rightarrow 0$ and then $M \rightarrow \infty$.

2

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon, \alpha} \wedge M] \, \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(\mathrm{d}x) = \frac{1}{\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(x) \, \mathbb{P}_{x}(\tau_{\mathcal{S}}^{\epsilon, \alpha} \leq M) \, \mu_{\epsilon}(\mathrm{d}x) \, ,$$

Objective: Take $\alpha \to 0$ and then $M \to \infty$.

For any smooth function f such that f = 0 on ∂S ,

$$\int_{\partial \mathcal{M}} f(x) \, \theta_{\mathcal{M}, \, \mathcal{S}}^{\epsilon, \, \alpha}(\mathrm{d}x) = \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon, \, \alpha}(x) \, (-\mathcal{L}_{\epsilon, \, \alpha}^* f(x)) \mu_{\epsilon}(\mathrm{d}x)$$
$$\xrightarrow{}_{\alpha \to 0} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon}(x) \, (-\mathcal{L}_{\epsilon}^* f(x)) \mu_{\epsilon}(\mathrm{d}x).$$

By Riesz–Markov–Kakutani representation theorem, there exists a probability measure $\theta^{\epsilon}_{\mathcal{M},S}$ such that

$$\theta_{\mathcal{M},\mathcal{S}}^{\epsilon,\,\mathbf{\alpha}} \xrightarrow[\alpha \to 0]{} \theta_{\mathcal{M},\mathcal{S}}^{\epsilon}.$$

In particular, $\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S}) \xrightarrow[\alpha \to 0]{} \operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S}).$

э

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon, \alpha} \wedge M] \, \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(\mathrm{d}x) = \frac{1}{\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(x) \, \mathbb{P}_{x}(\tau_{\mathcal{S}}^{\epsilon, \alpha} \leq M) \, \mu_{\epsilon}(\mathrm{d}x) \, ,$$

Objective: Take $\alpha \to 0$ and then $M \to \infty$.

For any smooth function f such that f = 0 on ∂S ,

$$\begin{split} \int_{\partial \mathcal{M}} f(x) \, \theta_{\mathcal{M}, \, \mathcal{S}}^{\epsilon, \, \alpha}(\mathrm{d}x) &= \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon, \, \alpha}(x) \, (-\mathcal{L}_{\epsilon, \, \alpha}^* f(x)) \mu_{\epsilon}(\mathrm{d}x) \\ & \longrightarrow \\ \prod_{\alpha \to 0} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon}(x) \, (-\mathcal{L}_{\epsilon}^* f(x)) \mu_{\epsilon}(\mathrm{d}x). \end{split}$$

By Riesz–Markov–Kakutani representation theorem, there exists a probability measure $\theta^{\epsilon}_{\mathcal{M},S}$ such that

$$\theta_{\mathcal{M},\mathcal{S}}^{\epsilon,\,\boldsymbol{\alpha}} \xrightarrow[\alpha \to 0]{} \theta_{\mathcal{M},\mathcal{S}}^{\epsilon}$$
.

In particular, $\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S}) \xrightarrow[\alpha \to 0]{} \operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S}).$

Additionally, by studying the trajectories,

$$\sup_{x\in\partial\mathcal{M}}\left|\mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon,\,\alpha}\wedge M]-\mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}\wedge M]\right|\underset{\alpha\to0}{\longrightarrow}0.$$

э

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon, \alpha} \wedge M] \, \theta_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(\mathrm{d}x) = \frac{1}{\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S})} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \mathcal{S}}^{\epsilon, \alpha}(x) \, \mathbb{P}_{x}(\tau_{\mathcal{S}}^{\epsilon, \alpha} \leq M) \, \mu_{\epsilon}(\mathrm{d}x) \, ,$$

Objective: Take $\alpha \to 0$ and then $M \to \infty$.

For any smooth function f such that f = 0 on ∂S ,

$$\begin{split} \int_{\partial \mathcal{M}} f(x) \, \theta_{\mathcal{M}, \, \mathcal{S}}^{\epsilon, \, \alpha}(\mathrm{d}x) &= \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon, \, \alpha}(x) \, (-\mathcal{L}_{\epsilon, \, \alpha}^* f(x)) \mu_{\epsilon}(\mathrm{d}x) \\ & \longrightarrow_{\alpha \to 0} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon}(x) \, (-\mathcal{L}_{\epsilon}^* f(x)) \mu_{\epsilon}(\mathrm{d}x). \end{split}$$

By Riesz–Markov–Kakutani representation theorem, there exists a probability measure $\theta^{\epsilon}_{\mathcal{M},S}$ such that

$$\theta_{\mathcal{M},\mathcal{S}}^{\epsilon,\,\boldsymbol{\alpha}} \xrightarrow[\alpha \to 0]{} \theta_{\mathcal{M},\mathcal{S}}^{\epsilon}$$
.

In particular, $\operatorname{cap}_{\epsilon, \alpha}(\mathcal{M}, \mathcal{S}) \xrightarrow[\alpha \to 0]{} \operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S}).$

Additionally, by studying the trajectories,

$$\sup_{x\in\partial\mathcal{M}}\left|\mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon,\alpha}\wedge M]-\mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}\wedge M]\right|\underset{\alpha\to 0}{\longrightarrow}0.$$

Finally,

$$\int_{\partial \mathcal{M}} \mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon} \wedge M] \, \theta_{\mathcal{M}, \, \mathcal{S}}^{\epsilon}(\mathrm{d} x) = \frac{1}{\mathrm{cap}_{\epsilon}(\mathcal{M}, \, \mathcal{S})} \int_{\mathbb{R}^{2n}} h_{\mathcal{M}, \, \mathcal{S}}^{\epsilon}(x) \, \mathbb{P}_{x}(\tau_{\mathcal{S}}^{\epsilon} \leq M) \, \mu_{\epsilon}(\mathrm{d} x) \, .$$

Taking $M \rightarrow \infty$ concludes the first step of the proof.

э

ヘロト ヘロト ヘヨト ヘヨト

21/24

Secondary steps of the proof:

9 By [Golse-Imbert-Mouhot-Vasseur, Ann. Pisa, 2019], we deduce that for $x \in \partial M$,

 $\mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \simeq \mathbb{E}_{(m,\,0)}[\tau_{\mathcal{S}}^{\epsilon}] \; .$

2

イロン イ団 とく ヨン イヨン

2

Secondary steps of the proof:

9 By [Golse-Imbert-Mouhot-Vasseur, Ann. Pisa, 2019], we deduce that for $x \in \partial M$,

 $\mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \simeq \mathbb{E}_{(m,\,0)}[\tau_{\mathcal{S}}^{\epsilon}] \; .$

 $h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) \simeq \mathbb{1}_{\text{first well}(x)}$.

2

2

Secondary steps of the proof:

9 By [Golse-Imbert-Mouhot-Vasseur, Ann. Pisa, 2019], we deduce that for $x \in \partial M$,

 $\mathbb{E}_{x}[\tau_{\mathcal{S}}^{\epsilon}] \simeq \mathbb{E}_{(m,\,0)}[\tau_{\mathcal{S}}^{\epsilon}] \; .$

$$h^{\epsilon}_{\mathcal{M}, \mathcal{S}}(x) \simeq \mathbb{1}_{\text{first well}(x)}$$
.

9 By choosing $f_{\epsilon} = \hat{f}_{\epsilon}$ in a neighborhood of σ and multiply by a cutoff function to satisfy the boundary conditions,

$$\operatorname{cap}_{\epsilon}(\mathcal{M}, \mathcal{S}) = [1 + o_{\epsilon}(1)] \frac{1}{Z_{\epsilon}} \frac{(2\pi\epsilon)^{n/2}}{2\pi} \frac{\mu_{1}^{\sigma}}{\sqrt{-\det \mathbb{H}_{U}^{\sigma}}} e^{-U(\sigma)/\epsilon}.$$

э

Low-lying spectrum

Theorem (Underdamped Langevin process)

$$\mathbb{E}_{m}(\tau_{\mathcal{S}}) = (1 + o_{\epsilon}(1)) \frac{2\pi}{\mu_{1}^{\sigma}} \sqrt{\frac{-\det \mathbb{H}^{\sigma}}{\det \mathbb{H}^{m}}} \exp\left(\frac{U(\sigma) - U(m)}{\epsilon}\right),$$
where $-\mu_{1}^{\sigma}$ is the unique negative eigenvalue of the matrix $\begin{pmatrix} \mathbb{H}^{\sigma} & \mathbb{O}_{n} \\ \mathbb{O}_{n} & \mathbb{I}_{n} \end{pmatrix} \begin{pmatrix} \mathbb{O}_{n} & \mathbb{I}_{n} \\ -\mathbb{I}_{n} & \gamma \mathbb{I}_{n} \end{pmatrix} \in \mathbb{R}^{2n \times 2n}$.

Remark: The low-lying spectrum was also studied when $\epsilon \rightarrow 0$ in [Hérau-Hitrik- Sjöstrand, AIHP, 2008], [Bony-Le Peutrec-Michel, JEMS, 2024] using semi-classical analysis techniques.

Open questions

Many questions remain ...

Formalizing Potential theory tools (work in progress)

- Expression of the equilibrium measure and the capacity.
- Well-definition of the electrostatic energy.
- Dirichlet principle.

Extension of Eyring-Kramers law to general forces

- Elliptic setting with non Gibbs invariant measure.
- Non-elliptic setting with non Gibbs invariant measure.

イロト イヨト イヨト

Open questions

Many questions remain ...

Formalizing Potential theory tools (work in progress)

- Expression of the equilibrium measure and the capacity.
- Well-definition of the electrostatic energy.
- Dirichlet principle.

Extension of Eyring-Kramers law to general forces

- Elliptic setting with non Gibbs invariant measure.
- Non-elliptic setting with non Gibbs invariant measure.

Thank you for your attention!

24/24

(日) (四) (日) (日) (日)