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Motivation

Molecular dynamics: Biology, Chemistry, Material science and applications in Nuclear
physics.

Examples:

Folding of a protein

Liquid-solid phase transition

Mouad Ramil (INRIA Rennes) Eyring-Kramers law June 5, 2025 3 / 24



Motivation

Molecular dynamics: Biology, Chemistry, Material science and applications in Nuclear
physics.

Examples:

Folding of a protein

Liquid-solid phase transition

Mouad Ramil (INRIA Rennes) Eyring-Kramers law June 5, 2025 3 / 24



Motivation

Molecular dynamics: Biology, Chemistry, Material science and applications in Nuclear
physics.

Examples:

Folding of a protein

Liquid-solid phase transition

Mouad Ramil (INRIA Rennes) Eyring-Kramers law June 5, 2025 3 / 24



Underdamped Langevin process

Consider N particles with unitary mass described by their position qt = (q1t , . . . , q
N
t ) ∈ R3N and

velocity pt = (p1t , . . . , p
N
t ) ∈ R3N at a constant temperature ϵ > 0.

Newton equation + Thermostat:{
dqt = ptdt,

dpt = −∇U(qt)dt−γptdt +
√

2γϵdBt

where

U : R3N → R is the interaction potential,

γ > 0 is the friction coefficient,

(Bt)t≥0 is the Brownian motion accounting for the random thermal fluctuations.

Numerical sampling : Approach (q̃n∆t , p̃n∆t) using a numerical scheme(
q̃(n+1)∆t , p̃(n+1)∆t

)
= Φ∆t (q̃n∆t , p̃n∆t)

where ∆t is the timestep.
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Metastability

Let τ be the transition time Phase 1 → Phase 2.

Metastability : The transition timescale (τ ≳ 10−6s) is much higher than the microscopic

fluctuations timescale (∆t ≃ 10−15s).

Happens when the temperature ϵ is small (small amplitude of the Brownian motion).

Sample the phase transition Phase 1 → Phase 2 = Sample a rare event of the evolution of
the system.

Question : What is the exact asymptotic of the average transition time when ϵ is small?
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Equilibrium potential

Let M, S be bounded C2 sets of Rn.

M Ω S

The equilibrium potential hϵM,S is defined as the solution to
Lϵ h

ϵ
M,S(x) = 0, x ∈ Ω ,

hϵM,S(x) = 1, x ∈ ∂M ,

hϵM,S(x) = 0, x ∈ ∂S ,

where Lϵ = −∇U · ∇+ ϵ∆.

Interpretation:

1 Metal plates attached to a battery imposing a constant voltage,

2 hϵM,S is the electrostatic potential at equilibrium on Ω.
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Probabilistic representation

Let (X ϵ
t )t≥0 be the overdamped Langevin process in Rn solution to

dX ϵ
t = −∇U(X ϵ

t )dt +
√
2ϵdBt ,

which infinitesimal generator is Lϵ.

Let τϵC := inf{t > 0 : X ϵ
t ∈ C}, then

hϵM,S(x) = Px (τ
ϵ
M < τϵS) .

Invariant measure: The process (X ϵ
t )t≥0 admits the Gibbs invariant probability distribution:

dµϵ(x) =
1

Zϵ
e−U(x)/ϵdx ,

where Zϵ is the normalizing constant.
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Equilibrium measure

The equilibrium measure is defined as:

νϵM,S(dx) = ϵ∇hϵM,S · nM(x)σ(dx) ,

where σ is the surface measure, nM is the unitary inward normal vector on ∂M.

The capacity is defined as:

capϵ(M, S) =
∫
∂M

νϵM,S(dx) .

By the divergence theorem,

capϵ(M, S) = ϵ

∫
Ω

∣∣∣∇hϵM,S(x)
∣∣∣2 µϵ(dx) .

Interpretation:

1 νϵM,S is the distribution of charge at the surface of M,

2 capϵ(M, S) is the total charge on the plate M.

3 capϵ(M, S) is also equal to the total electrostatic energy on Ω.
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Identity

Let f be a smooth function in Rn vanishing on ∂S. Then,

∫
∂M

f (x) νϵM,S(dx) =

∫
∂M

f (x)∇hϵM,S · nM(x)σ(dx)

=

∫
Ω
f (x) Lϵh

ϵ
M,S(x)︸ ︷︷ ︸
=0

µϵ(dx) +

∫
Ω
∇f (x) · ∇hϵM,S(x)µϵ(dx)

=

∫
Rn

hϵM,S(x) (−Lϵf (x))µϵ(dx) .

Defining f (x) = Ex [τϵS ], there exists a probability measure θϵM,S on ∂M such that

∫
∂M

Ex [τ
ϵ
S ] θ

ϵ
M,S(dx) =

1

capϵ(M, S)

∫
Rn

hϵM,S(x)µϵ(dx) ,

since Lϵf = −1.
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Eyring-Kramers law

Assumption : U is a C2 Morse function.

Double well potential.

Let M = B(m, ϵ) and S = B(s, ϵ).

Eyring-Kramers law: Asymptotics of Em[τϵS ] when ϵ → 0?

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]∫
∂M Ex [τϵS ] θ

ϵ
M,S(dx) =

1
capϵ(M,S)

∫
Rn h

ϵ
M,S(x)µϵ(dx) .

1 For x ∈ ∂M, Ex [τϵS ] ≃ Em[τϵS ] .

2 hϵM,S(x) ≃ 1first well(x) .

3 Dirichlet principle:

capϵ(M, S) = ϵ inf

{∫
R2d

|∇f (x)|2e−U(x)/ϵdx , f = 1 on ∂M, f = 0 on ∂S
}
.
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Capacity computation

Let δ =
√

ϵ log(1/ϵ). Define

f̂ (x) =
1∫ δ

−δ e
−

λσ
1

2ϵ
t2dt

∫ ⟨x, e1⟩

−δ
e−

λσ
1

2ϵ
t2dt ,

which is solution to the linearized operator L̂ = −Hσx · ∇+ ϵ∆ when x ≃ σ.

Let f be the test
function satisfying

where the colored zones are connected components of {U(x) ≤ U(σ) + δ2}.
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Eyring-Kramers law

Theorem (Overdamped Langevin process)

Let Hm (resp. Hσ) be the Hessian of U on m (resp. σ). Then,

Em(τ
ϵ
S) = (1 + oϵ(1))

2π

λσ
1

√
− detHσ

detHm
exp

(
U(σ)− U(m)

ϵ

)
,

where −λσ
1 is the unique negative eigenvalue of Hσ .

This law was extended in [Lee-Seo, PTRF, 2021] for elliptic and non-reversible diffusion
processes satisfying

dX ϵ
t = −(∇U(X ϵ

t ) + ℓ(X ϵ
t ))dt +

√
2ϵdBt ,

such that for all x ∈ Rn,
∇U(x) · ℓ(x) = 0, (∇ · ℓ)(x) = 0 .

Remarks:

µϵ remains invariant,

-λσ
1 is replaced by the unique negative eigenvalue −µσ

1 of Hσ + DLσ ,

f̂ does not satisfy the same boundary conditions.
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Non-elliptic and non-reversible setting

Consider the underdamped Langevin process{
dqϵt = pϵt dt,

dpϵt = −∇U(qϵt )dt − γpϵt dt +
√

2γϵdBt .

Its infinitesimal generator is the kinetic Fokker-Planck operator

Lϵ = ⟨p, ∇q⟩ − ⟨∇U(q), ∇p⟩ − γ⟨p, ∇p⟩+ ϵ∆p .

Its invariant measure is given by

dµϵ(q, p) =
1

Zϵ
e−V (q, p)/ϵdqdp ,

where V (q, p) = U(q) + |p|2/2 and Zϵ is the normalizing factor.

Notation: Let

M = B((m, 0), ϵ), S = B((s, 0), ϵ) .
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Capacity

Difficulties:

1 Lϵ is not reversible.

2 The equilibrium measure, thus the capacity are ill-defined because of the non-ellipticity.

3 The Dirichlet principle is an open question with recent advancements
[Albritton-Armstrong-Mourrat-Novack, 2025].

Idea inspired from [Bovier-den Hollander, 2015], [Lee-Seo, PTRF, 2021]: Let f be a smooth

function in Rn satisfying f = 1 on ∂M and f = 0 on ∂S. By integration by parts (to be
justified),

capϵ(M, S) =
∫

R2n
hϵM,S(x) (−L∗

ϵ f (x))µϵ(dx) ,

where L∗
ϵ is the adjoint of Lϵ on µϵ(dx), i.e.

L∗
ϵ = −⟨p, ∇q⟩+ ⟨∇U(q), ∇p⟩ − γ⟨p, ∇p⟩+ ϵ∆p .
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Potential theory

Equilibrium measure: We show the existence of a non-negative measure νϵM,S on ∂M such that
for all smooth test functions satisfying f = 0 on ∂S,∫

R2n
hϵM,S(x) (−L∗

ϵ f (x))µϵ(dx) =

∫
∂M

f (x) νϵM,S(dx) .

Capacity: Additionally, if f = 1 on ∂M,

capϵ(M, S) =
∫

R2n
hϵM,S(x) (−L∗

ϵ f (x))µϵ(dx) .

It is independent of the choice of f .

The first step of the proof then consists in showing that∫
∂M

Ex [τ
ϵ
S ] θ

ϵ
M,S(dx) =

1

capϵ(M, S)

∫
R2n

hϵM,S(x)µϵ(dx) ,

where θϵM,S = νϵM,S/capϵ(M, S).
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Scheme of proof

Consider the process (X ϵ, α
t = (qϵ, αt , pϵ, αt ))t≥0{
dqϵ, αt = pϵ, αt dt−α∇U(qϵ, αt )dt +

√
2αϵdB̃t ,

dpϵ, αt = −∇U(qϵ, αt )dt − γpϵ, αt dt +
√

2γϵdBt

where (Bt)t≥0, (B̃t)t≥0 are independent Brownian motions.

Its infinitesimal generator Lϵ, α is given by

Lϵ, α = Lϵ−α⟨∇U(q), ∇q⟩+ αϵ∆q .

Properties:

The process (X ϵ, α
t )t≥0 is elliptic and non-reversible,

Its invariant measure is also µϵ.

As a result, ∫
∂M

Ex [τ
ϵ, α
S ] θϵ, αM,S(dx) =

1

capϵ, α(M, S)

∫
R2n

hϵ, αM,S(x)µϵ(dx) ,

Objective: Take the limit α → 0.
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Scheme of proof∫
∂M

Ex [τ
ϵ, α
S ∧M] θϵ, αM,S(dx) =

1

capϵ, α(M, S)

∫
R2n

hϵ, αM,S(x)Px (τ
ϵ, α
S ≤ M)µϵ(dx) ,

Objective: Take α → 0 and then M → ∞.

For any smooth function f such that f = 0 on ∂S,∫
∂M

f (x) θϵ, αM,S(dx) =

∫
R2n

hϵ, αM,S(x) (−L∗
ϵ, αf (x))µϵ(dx)

−→
α→0

∫
R2n

hϵM,S(x) (−L∗
ϵ f (x))µϵ(dx).

By Riesz–Markov–Kakutani representation theorem, there exists a probability measure θϵM,S
such that

θϵ, αM,S −→
α→0

θϵM,S .

In particular, capϵ, α(M, S) −→
α→0

capϵ(M, S).

Additionally, by studying the trajectories,

sup
x∈∂M

∣∣Ex [τ
ϵ, α
S ∧M]− Ex [τ

ϵ
S∧M]

∣∣ −→
α→0

0 .

Finally, ∫
∂M

Ex [τ
ϵ
S∧M] θϵM,S(dx) =

1

capϵ(M, S)

∫
R2n

hϵM,S(x)Px (τ
ϵ
S ≤ M)µϵ(dx) .

Taking M → ∞ concludes the first step of the proof.
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Scheme of proof

Secondary steps of the proof:

1 By [Golse-Imbert-Mouhot-Vasseur, Ann. Pisa, 2019], we deduce that for x ∈ ∂M,

Ex [τ
ϵ
S ] ≃ E(m, 0)[τ

ϵ
S ] .

2

hϵM,S(x) ≃ 1first well(x) .

3 By choosing fϵ = f̂ϵ in a neighborhood of σ and multiply by a cutoff function to satisfy the
boundary conditions,

capϵ(M, S) = [1 + oϵ(1)]
1

Zϵ

(2πϵ)n/2

2π

µσ
1√

− detHσ
U

e−U(σ)/ϵ.
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Low-lying spectrum

Theorem (Underdamped Langevin process)

Em(τS) = (1 + oϵ(1))
2π

µσ
1

√
− detHσ

detHm
exp

(
U(σ)− U(m)

ϵ

)
,

where −µσ
1 is the unique negative eigenvalue of the matrix

(
Hσ On

On In

)(
On In
−In γIn

)
∈ R2n×2n .

Remark: The low-lying spectrum was also studied when ϵ → 0 in [Hérau-Hitrik- Sjöstrand, AIHP,
2008], [Bony-Le Peutrec-Michel, JEMS, 2024] using semi-classical analysis techniques.
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Open questions

Many questions remain...

Formalizing Potential theory tools (work in progress)

Expression of the equilibrium measure and the capacity.

Well-definition of the electrostatic energy.

Dirichlet principle.

Extension of Eyring-Kramers law to general forces

Elliptic setting with non Gibbs invariant measure.

Non-elliptic setting with non Gibbs invariant measure.

Thank you for your attention!
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