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Motivation

o Molecular dynamics: Biology, Chemistry, Material science and applications in Nuclear
physics.

o Examples:
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Folding of a protein

Liquid-solid phase transition
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Underdamped Langevin process

Consider N particles with unitary mass described by their position q: = (g3, ..., q{v) € R3V and
velocity p: = (p},...,pYN) € R3N at a constant temperature ¢ > 0.
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Underdamped Langevin process

Consider N particles with unitary mass described by their position q: = (g3, ..., q{v) € R3V and
velocity p: = (p},...,pYN) € R3N at a constant temperature ¢ > 0.

Newton equation + Thermostat:

dg: = pedt,
dPt = —VU(qt)dt—’thdt + 2’Y€dBt

where
o U:R3N — R is the interaction potential,

@ v > 0 is the friction coefficient,

@ (B:)¢>0 is the Brownian motion accounting for the random thermal fluctuations.
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Underdamped Langevin process

Consider N particles with unitary mass described by their position q: = (g3, ..., q{v) € R3V and

velocity p: = (p}7 cee p?’) € R3V at a constant temperature € > 0.

Newton equation + Thermostat:

dg: = pedt,
dPt = —VU(qt)dt—vptdt + 2’Y€dBt

where
o U:R3N — R is the interaction potential,

@ v > 0 is the friction coefficient,

@ (B:)¢>0 is the Brownian motion accounting for the random thermal fluctuations.

Numerical sampling : Approach (§nat, Pnat) using a numerical scheme

(E’(n+1)At7 ﬁ(n+1)At) = ¢At (ElnAn ﬁnAt)

where At is the timestep.
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Metastability

A

Phase 1

Phase 2 p

Let 7 be the transition time Phase 1 — Phase 2.
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Metastability

A

Phase 1

Phase 2 p

Let 7 be the transition time Phase 1 — Phase 2.

o Metastability : The transition timescale (7 > 107%s) is much higher than the microscopic
fluctuations timescale (At ~ 10~1%s).
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Metastability

A

Phase 1

Phase 2 p

Let 7 be the transition time Phase 1 — Phase 2.

o Metastability : The transition timescale (7 > 107%s) is much higher than the microscopic
fluctuations timescale (At ~ 10~1%s).

o Happens when the temperature ¢ is small (small amplitude of the Brownian motion).
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Metastability

A

Phase 1
Phase 2 p

Let 7 be the transition time Phase 1 — Phase 2.
o Metastability : The transition timescale (7 > 107%s) is much higher than the microscopic
fluctuations timescale (At ~ 10~1%s).
o Happens when the temperature ¢ is small (small amplitude of the Brownian motion).

@ Sample the phase transition Phase 1 — Phase 2 = Sample a rare event of the evolution of
the system.
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Metastability

A

Phase 1
Phase 2 p

Let 7 be the transition time Phase 1 — Phase 2.
o Metastability : The transition timescale (7 > 107%s) is much higher than the microscopic
fluctuations timescale (At ~ 10~1%s).
o Happens when the temperature ¢ is small (small amplitude of the Brownian motion).

@ Sample the phase transition Phase 1 — Phase 2 = Sample a rare event of the evolution of
the system.

Question : What is the exact asymptotic of the average transition time when € is small?
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© Eyring-Kramers law in the elliptic and reversible setting
@ Potential theory
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Equilibrium potential

Let M, S be bounded C? sets of R".

The equilibrium potential h§, s is defined as the solution to
Eeth’S(x):O, x€Q,
h,s(x) =1, x€oM,
ho,s(x) =0, x€0S,
where L = —VU -V + €A.
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Equilibrium potential

Let M, S be bounded C? sets of R".

The equilibrium potential h§, s is defined as the solution to
Lehjy s(x)=0, x€Q,
h,s(x) =1, x€oM,
ho,s(x) =0, x€0S,
where L = —VU -V + €A.

Interpretation:

@ Metal plates attached to a battery imposing a constant voltage,

@ hf, s is the electrostatic potential at equilibrium on Q.
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Probabilistic representation

Let (Xf):>0 be the overdamped Langevin process in R” solution to
dX{ = —VU(X{)dt + V2edB: ,

which infinitesimal generator is L.

Let 75 :=inf{t > 0: X{ € C}, then

hja, s(x) = Px(Tju <75) -
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Probabilistic representation

Let (Xf):>0 be the overdamped Langevin process in R” solution to
dX{ = —VU(X{)dt + V2edB: ,

which infinitesimal generator is L.

Let 75 :=inf{t > 0: X{ € C}, then

hja, s(x) = Px(Tju <75) -

Invariant measure: The process (Xf):>o admits the Gibbs invariant probability distribution:
L —u6/e
dpe(x) = —-e dx,
Ze

where Z is the normalizing constant.
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Equilibrium measure

The equilibrium measure is defined as:
Viu, s(dx) = eVhj s na(x)o(dx) ,
where o is the surface measure, na is the unitary inward normal vector on M.

The capacity is defined as:

cap (M, S) = / Vi, s(dx) .
oM
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Equilibrium measure

The equilibrium measure is defined as:
Viu, s(dx) = eVhj s na(x)o(dx) ,
where o is the surface measure, na is the unitary inward normal vector on M.
The capacity is defined as:
cap (M, S) = / Vi s(dx) .
om T
By the divergence theorem,

2
cap, (M, S)ZE/QIWEMVS(X)‘ pe(dx)
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Equilibrium measure

The equilibrium measure is defined as:
ij’s(dx) = €Vh5\/l,s “npm(x) o(dx) ,
where o is the surface measure, na is the unitary inward normal vector on M.

The capacity is defined as:

cap (M, S) = / Vi, s(dx) .
oM

By the divergence theorem,

2
cap, (M, S)ZE/QIWEMYS(X)‘ pe(dx) .

Interpretation:
@ v, g is the distribution of charge at the surface of M,

@ cap (M, S) is the total charge on the plate M.
@ cap (M, S) is also equal to the total electrostatic energy on .
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Identity

Let f be a smooth function in R” vanishing on dS. Then,

/ f(x)uj\,l,s(dx):/ F(x) Vs - na(x) o(dx)
oM oM

= [ F00 et 509 peld) + [ T70x) - Thive 5(6) e
Q | —— Q
=0

= [ B s () (~LeF () el

Mouad Ramil (INRIA Rennes) Eyring-Kramers law June 5, 2025 10/24



Identity

Let f be a smooth function in R” vanishing on dS. Then,

/ f(x)uj\,l,s(dx):/ F(x) Vs - na(x) o(dx)
oM oM

= [ F00 et 509 peld) + [ T70x) - Thive 5(6) e
Q | —— Q
=0

= [ B s () (~LeF () el
Defining f(x) = Ex[7&], there exists a probability measure 05, g on OM such that

€ € — 1 €
/BM Ex[7§] 05, s(dx) = cap. (M, S) /R" h, s(x) pe(dx) ,

since L.f = —1.
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© Eyring-Kramers law in the elliptic and reversible setting
@ Scheme of proof
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Eyring-Kramers law

Assumption : U is a C2 Morse function.

s

Double well potential.
Let M = B(m, €) and S = B(s, ¢).

Eyring-Kramers law: Asymptotics of Ep[75] when ¢ — 07
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Eyring-Kramers law

Assumption : U is a C2 Morse function.

s

Double well potential.
Let M = B(m, €) and S = B(s, ¢).
Eyring-Kramers law: Asymptotics of Ep[75] when ¢ — 07

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

Joa Ex[78105, s(dx) = porsy Jre i, s () pe(dx) -
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Eyring-Kramers law

Assumption : U is a C2 Morse function.

s

Double well potential.
Let M = B(m, €) and S = B(s, ¢).
Eyring-Kramers law: Asymptotics of Ep[75] when ¢ — 07

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

Joa Ex[78105, s(dx) = porsy Jre i, s () pe(dx) -

@ For x € OM, Ex[75] ~ Em[TE] -
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Eyring-Kramers law

Assumption : U is a C2 Morse function.

s

Double well potential.
Let M = B(m, €) and S = B(s, ¢).
Eyring-Kramers law: Asymptotics of Ep[75] when ¢ — 07

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

Joa Ex[78105, s(dx) = porsy Jre i, s () pe(dx) -

@ For x € OM, Ex[75] ~ Em[TE] -

2] hj\/{} S(X) =~ Lfirse well(x) *
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Eyring-Kramers law

Assumption : U is a C2 Morse function.

s

Double well potential.
Let M = B(m, €) and S = B(s, ¢).
Eyring-Kramers law: Asymptotics of Ep[75] when ¢ — 07

Proof idea: [Bovier-Eckhoff-Gayrard-Klein, JEMS, 2004]

Joa Ex[78105, s(dx) = porsy Jre i, s () pe(dx) -

@ For x € OM, Ex[75] ~ Em[TE] -
Q hj\A’ S(X) =~ lfirst well(x) *

© Dirichlet principle:

cap (M, S) = e inf {/ |VF(x)[2e=VX)/€dx, f=10ndM, f=0on as} .
R2d
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Capacity computation

Let 6 = \/elog(1/¢). Define

N 1 (xe1)  a¢
fx) = #/ e,
ffé e~ e 70
which is solution to the linearized operator L =—Hox -V +eA when x ~ ¢.
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Capacity computation

Let § = \/elog(1/e). Define

f(x) = !

/<X791)
XU
2 2dt

e
=

function satisfying

fis e

A7 o
“2etde,
which is solution to the linearized operator L = —H%x -V + eA when x ~ o. Let f be the test
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where the colored zones are connected components of {U(x) < U(o) + §2}.
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Eyring-Kramers law

Theorem (Overdamped Langevin process)
Let H™ (resp. H? ) be the Hessian of U on m (resp. o). Then,

EEL (U(a) - U(m)) ’

detH™ €

En(r§) = (1 +0(1) 2
1

where —\{ is the unique negative eigenvalue of H?.
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Eyring-Kramers law

Theorem (Overdamped Langevin process)
Let H™ (resp. H? ) be the Hessian of U on m (resp. o). Then,

EEL (U(a) - U(m)) ’

detH™ €

En(r§) = (1 +0(1) 2
1

where —\{ is the unique negative eigenvalue of H?.

This law was extended in [Lee-Seo, PTRF, 2021] for elliptic and non-reversible diffusion
processes satisfying
dX{ = —(VU(X?) + 0(X5))dt + V2edB:

such that for all x € R”,
VU(x) - ¢(x) =0, (V- 0)(x)=0.
Remarks:
@ [Lc remains invariant,

@ -)\7 is replaced by the unique negative eigenvalue —ug of H” + DL?,

o 7 does not satisfy the same boundary conditions.
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© Eyring-Kramers law in a non-reversible and non-elliptic setting
o Extension of the potential theory
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Non-elliptic and non-reversible setting

Consider the underdamped Langevin process

dg; = prdt,
dpi = —VU(gf)dt — ypidt + /2vedB.

Its infinitesimal generator is the kinetic Fokker-Planck operator

Le={p, Vo) = (VU(Q), V) = 7(p, Vo) + el
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Non-elliptic and non-reversible setting

Consider the underdamped Langevin process

dg; = prdt,
dpi = —VU(gf)dt — ypidt + /2vedB.

Its infinitesimal generator is the kinetic Fokker-Planck operator
Lo = (p, Vo) = (VU(q), Vo) = 7(p, Vi) + by

Its invariant measure is given by

1
dpe(q, p) = 7e_v(""’)/€dqdp ,

€

where V(q, p) = U(q) + |p|?/2 and Z is the normalizing factor.

Notation: Let
M =B((m, 0), €), S =B((s, 0), €) .
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Capacity

Difficulties:
@ L. is not reversible.
@ The equilibrium measure, thus the capacity are ill-defined because of the non-ellipticity.

© The Dirichlet principle is an open question with recent advancements
[Albritton-Armstrong-Mourrat-Novack, 2025].
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Capacity

Difficulties:
@ L. is not reversible.
@ The equilibrium measure, thus the capacity are ill-defined because of the non-ellipticity.

© The Dirichlet principle is an open question with recent advancements
[Albritton-Armstrong-Mourrat-Novack, 2025].

Idea inspired from [Bovier-den Hollander, 2015], [Lee-Seo, PTRF, 2021]: Let f be a smooth
function in R” satisfying f =1 on &M and f = 0 on S. By integration by parts (to be
justified),

capc (M, 8) = [ i 500 (£2F00) ().
where L£¥ is the adjoint of Lc on pe(dx), i.e.

L =—(p, Vq) +(VU(q), Vp) —¥{p, Vp) +€lp .
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Potential theory

Equilibrium measure: We show the existence of a non-negative measure v§, g on M such that
for all smooth test functions satisfying f = 0 on 9S,

/hj\A,s(X)(—EZf(X))ue(dX)=/ F(x) Vi, s(dx) -
R2n oM
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Potential theory

Equilibrium measure: We show the existence of a non-negative measure v§, g on M such that

for all smooth test functions satisfying f = 0 on 9S,

o P s L26 N el = [ 700 v ()
R2n oM

Capacity: Additionally, if f =1 on OM,
ap (M, 8) = [ Hi 5() (~£27()) e( @)

It is independent of the choice of f.
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Potential theory

Equilibrium measure: We show the existence of a non-negative measure v§, g on M such that
for all smooth test functions satisfying f = 0 on 9S,

o P s L26 N el = [ 700 v ()
R2n M

Capacity: Additionally, if f =1 on OM,
ap (M, 8) = [ Hi 5() (~£27()) e( @)
It is independent of the choice of f.

The first step of the proof then consists in showing that

1
Ex[75] 605 dx) = ——— hS e(dx) ,
S B0 s (@00 = s [ i sGoe(ax)

where 05 5 =15, s/cap.(M, S).
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© Eyring-Kramers law in a non-reversible and non-elliptic setting
@ Scheme of proof
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Scheme of proof

Consider the process (X;”* = (g;" %, py’ “))t>0

dqp
dpy® =

po “dt—aVU(qP “)dt + V2aed By,
—VU(qp *)dt — yp; “dt + 1/2vedBe

where (Bt):>o0, (ét)tzo are independent Brownian motions.

Its infinitesimal generator L « is given by

Le o= Le—a(VU(q), Vq) + aelg.
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Scheme of proof

Consider the process (X;”* = (g;" %, py’ “))t>0

{d % = pf *dt—aVU(qf *)dt + V2aed B,
dp;® = =V U(gy “)dt — yp; “dt + 1/2ved B

where (Bt):>o0, (ét)tzo are independent Brownian motions.
Its infinitesimal generator L « is given by

Le o= Le—a(VU(q), Vq) + aelg.
Properties:

@ The process (X;”*);>o is elliptic and non-reversible,

@ Its invariant measure is also fic.
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Scheme of proof

Consider the process (X;”* = (g;" %, py’ “))t>0

dqp
dpy @

where (Bt):>o0, (ét)tzo are independent Brownian motions.

pe *dt—aVU(qf “)dt + V2aed By,
—VU(qp *)dt — yp; “dt + 1/2vedBe

Its infinitesimal generator L « is given by
Lea=Le—a(VU(q), Vq) + aelq.
Properties:
@ The process (X;”*);>o is elliptic and non-reversible,
@ Its invariant measure is also fic.

As a result,

1
E €, ee,a d _ / he,n . d
S B 10000 = o [ G0,
Objective: Take the limit o — 0.
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Scheme of proof

Ex[rS “A MO9S o(dx) =
/6M LTS A M]3 (%)

Objective: Take o — 0 and then M — oo.

s
_ h
Cape, [eY (M7 S) R2n

j\fs(x) PX(TE’Q < M)ME(dX) )
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Scheme of proof

/ E. [ SN M] ej\hos(dx) = h% QS(X) Px(‘l'fs’(y < M) /’Le(dx) ’
oM )

1 /
Cape,a(Mv ‘S) R2n
Objective: Take o — 0 and then M — co.

For any smooth function f such that f =0 on 39S,
[ 00050 s = [ K 00 (~£8 0 FOe(x)
oM R2n
T L i, 0 (~L2F (),

By Riesz—Markov—Kakutani representation theorem, there exists a probability measure 0%, ¢
such that '

(a7
9/\43—’9/\48

In particular, cap, (M, S) — cap.(M, S).
’ a—
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Scheme of proof

1
Exlrs “AM] 05 o(dx) = —————— [ B0 g(x) Px(75 @ < M) pe(dx)
B A M0 00 = o [ SGOPLGE < M) )

Objective: Take o — 0 and then M — oo.

For any smooth function f such that f =0 on 39S,
[ 00050 s = [ K 00 (~£8 0 FOe(x)
oM ’ R2n
€ _ *
T Fit, 500 (FLZFGOpe().
By Riesz—Markov—Kakutani representation theorem, there exists a probability measure 0%, ¢
such that
«@
055 50, -
In particular, cap, (M, §) — cap (M, S).
’ a—0
Additionally, by studying the trajectories,
sup |Ex[Tg “AM] —Ex[rsAM]| — 0.
a—0

x€0.
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Scheme of proof

1
Exlrs “AM] 05 o(dx) = —————— [ B0 g(x) Px(75 @ < M) pe(dx)
B A M0 00 = o [ SGOPLGE < M) )

Objective: Take o — 0 and then M — oo.

For any smooth function f such that f =0 on 39S,
[ 00050 s = [ K 00 (~£8 0 FOe(x)
oM R2n
T L i, 0 (~L2F (),

By Riesz—Markov—Kakutani representation theorem, there exists a probability measure 0%, ¢
such that '

«@
055 50, -
In particular, cap, (M, S) — cap, (M, S).
’ a—

Additionally, by studying the trajectories,

sup |Ex[Tg “AM] —Ex[rsAM]| — 0.
xEB. a—0
Finally,
Ex[r§AM] 65, s(dx) = ———— Px (dx) .
[ EsA MO s(00) = s [ i (Pl < M) elax)

Taking M — oo concludes the first step of the proof.
Mouad Ramil (INRIA Rennes) Eyring-Kramers law June 5, 2025 21/24



Scheme of proof

Secondary steps of the proof:

@ By [Golse-Imbert-Mouhot-Vasseur, Ann. Pisa, 2019], we deduce that for x € M,

Ex[75] = E(m, 0)[75] -
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Scheme of proof

Secondary steps of the proof:

@ By [Golse-Imbert-Mouhot-Vasseur, Ann. Pisa, 2019], we deduce that for x € M,

Ex[75] = E(m, 0)[75] -

h.ef\/l,S(X) ~ Lirst well(x) *
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Scheme of proof

Secondary steps of the proof:

@ By [Golse-Imbert-Mouhot-Vasseur, Ann. Pisa, 2019], we deduce that for x € M,

Ex[75] =~ E(m, o)[75] -

h.E/Vl, S(X) ~ Lirst well(x) *

© By choosing f. = E in a neighborhood of o and multiply by a cutoff function to satisfy the
boundary conditions,

1 (2me)"/? B —u(o)/e

Z. 21 /—detH;

cap(M, §) = [1 + oe(1)]
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Low-lying spectrum

Theorem (Underdamped Langevin process)

—detHe exp (U(a) — U(m)) 7
detH™ €

Em(7s) = (1+ oe(l))z—;

(o8
where —uS is the unique negative eigenvalue of the matrix H On On ln e R21X2n8
On |,, _In ’Yln

Remark: The low-lying spectrum was also studied when € — 0 in [Hérau-Hitrik- Sjéstrand, AIHP,
2008], [Bony-Le Peutrec-Michel, JEMS, 2024] using semi-classical analysis techniques.
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Open questions

Many questions remain...

Formalizing Potential theory tools (work in progress)
o Expression of the equilibrium measure and the capacity.
o Well-definition of the electrostatic energy.

@ Dirichlet principle.
Extension of Eyring-Kramers law to general forces

o Elliptic setting with non Gibbs invariant measure.

o Non-elliptic setting with non Gibbs invariant measure.

Mouad Ramil (INRIA Rennes) Eyring-Kramers law June 5, 2025 24 /24



Open questions

Many questions remain...

Formalizing Potential theory tools (work in progress)
o Expression of the equilibrium measure and the capacity.
o Well-definition of the electrostatic energy.

@ Dirichlet principle.

Extension of Eyring-Kramers law to general forces
o Elliptic setting with non Gibbs invariant measure.

o Non-elliptic setting with non Gibbs invariant measure.

Thank you for your attention!

Mouad Ramil (INRIA Rennes) Eyring-Kramers law June 5, 2025 24 /24



	Motivation
	Eyring-Kramers law in the elliptic and reversible setting
	Potential theory
	Scheme of proof

	Eyring-Kramers law in a non-reversible and non-elliptic setting
	Extension of the potential theory
	Scheme of proof


