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Population distributed as P(Ω) 3 %→ min

∫
Ω
F (%(x))dx+W 2

2

(
%,

N∑
i=1

aiδxi
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Working sites given by (x,a)→ minW 2
2

(
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N
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A variational principal for the organization of urban areas

Energy proposed by Buttazzo and Santambrogio for the configuration of urban areas1

E (%,x,a)
def.
=

∫
Ω
F (%(x))dx+

N∑
i=1

g(ai) +W 2
2

(
%,

N∑
i=1

aiδxi

)

F (%)
def.
=

∫
Ω
F (%(x))dx→ forces uniform integrability

1Giuseppe Buttazzo and Filippo Santambrogio. “A model for the optimal planning of an urban area”. In: SIAM journal on mathematical analysis

(2005).
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=

∫
Ω
F (%(x))dx+

N∑
i=1

g(ai) +W 2
2

(
%,

N∑
i=1

aiδxi

)

G (µx,a)
def.
=

N∑
i=1

g(ai)→ encourages economy of scale as lim
t→0+

g(t)

t
= +∞

1Giuseppe Buttazzo and Filippo Santambrogio. “A model for the optimal planning of an urban area”. In: SIAM journal on mathematical analysis

(2005).
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Energy proposed by Buttazzo and Santambrogio for the configuration of urban areas1

E (%,x,a)
def.
=

∫
Ω
F (%(x))dx+

N∑
i=1

g(ai) +W 2
2

(
%,

N∑
i=1

aiδxi

)

W 2
2 (µ, ν)

def.
= min

T]µ=ν

1

2

∫
Ω
|x− T (x)|2dµ→ penalizes total transportation cost

1Giuseppe Buttazzo and Filippo Santambrogio. “A model for the optimal planning of an urban area”. In: SIAM journal on mathematical analysis

(2005).
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A variational principal for the organization of urban areas

In the semi-discrete case we have the formation of Laguerre tesselations

W 2
2

(
%,

N∑
i=1

aiδxi

)
= max

ψ∈RN

∫
Ω

min
i=1,...,N

[
1

2
|x− xi|2 − ψi

]
d%+

N∑
i=1

aiψi

Ωi = Lagi(x, ψ)

def.
=

{
x ∈ Ω :

1

2
|x− xi|2 − ψi ≤

1

2
|x− xj |2 − ψj for all j

}
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A dynamical model

This is a static formulation

min
%,x,a

E (%,x,a)

Consider the gradient flow of the energy E ...
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A dynamical model

Consider the gradient flow of the energy E ...

∂t%t = div

(
%t

(
∇F ′(%t) +

N∑
i=1

(x− xi(t))1Ωi(t)

))

0 = nΩ ·

(
∇F ′(%t) +

N∑
i=1

(x− xi(t))1Ωi(t)

)
ẋi ∈ −aixi +

∫
Ωi(t)

xd%t +NΩ(xi),

ȧi = −g′(ai)− ψi(t), over ai > 0,

0 =
∑
i:ai>0

ψi(t) +
∑
i:ai>0

g′(ai), Ωi(t) = Lagi(ψt,xt),

ψt = (ψi(t))
N
i=1 is a potential for W 2

2 (%t, µt)

(GradFlow)
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A dynamical model

Consider the gradient flow of the energy E ... or more simply

∂t%t = div

(
%t

(
∇F ′(%t) +

N∑
i=1

(x− xi(t))1Ωi(t)

))
ẋi ∈ −aixi +

∫
Ωi(t)

xd%t,

ȧi = −g′(ai)− ψi(t), over ai > 0,

(GradFlow)
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A dynamical model

Definition

We say t 7→ (%t,xt,at) ∈ C 0(P2 × Ω⊗N ×∆N−1) is a weak solution to (GradFlow)

s.t. F ′(%) ∈ L1([0, T ]×W 1,1(Ω)), satisfying the boundary conditions and

• 0 =

∫ T

0

∫
Ω

(
−∂tφ+∇φ ·

[
∇F ′(%t) +

N∑
i=1

(x− xτt,i)1Ωi(t)

])
d%tdt

for all φ ∈ C∞
c ((0, T )× Ω)

• −
∫ T

0

f ′(t) · xt,idt = −
∫ T

0

f(t) ·

(
at,i · xt,i −

∫
Ωt,i

xd%t

)
dt

for all f ∈ C∞
c ((0, T ),Rd) and i = 1, . . . , N

• −
∫ T

0

h′(t)ai(t)dt = −
∫ T

0

h(t) · (g′(ai(t)) + ψi(t)) dt

for all h ∈ C∞
c ((0, T )) and i = 1, . . . , N
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Existence of Solutions: the JKO scheme

Via the JKO scheme1

%τk+1 ∈ argmin F (%) +
1

2τ
W 2

2 (%τk, %), %τt
def.
= %τk+1 if t ∈ (kτ, (k + 1)τ ]

1Jordan, Kinderlehrer, and Otto, “The variational formulation of the Fokker–Planck equation”.

5/11



Existence of Solutions: the JKO scheme

Via the JKO scheme1

%τk+1 ∈ argmin F (%) +
1

2τ
W 2
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def.
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Then we know that %τ converges to a weak solution of

∂t%t = div

(
%t∇

δF

δ%
(%t)

)
, nΩ · ∇

δF

δ%
(%t) = 0

1Jordan, Kinderlehrer, and Otto, “The variational formulation of the Fokker–Planck equation”.
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Existence of Solutions: the JKO scheme

Via the JKO scheme1

%τk+1 ∈ argmin F (%) +
1

2τ
W 2

2 (%τk, %), %τt
def.
= %τk+1 if t ∈ (kτ, (k + 1)τ ]

Strategy used to show existence of solutions to other non-linear PDEs
• in crowd motion2

• for the total-variation flow3

1Jordan, Kinderlehrer, and Otto, “The variational formulation of the Fokker–Planck equation”.

2Maury et al., “Handling congestion in crowd motion modeling”.

3Carlier and Poon, “On the total variation Wasserstein gradient flow and the TV-JKO scheme”.
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Convergence of the JKO scheme

(
%τk+1,x

τ
k+1,a

τ
k+1

)
k∈N ∈ argmin F (%) + G (µx,a) +W 2

2 (%, µx,a)

+
1

2τ

(
W 2

2 (%τk, %) + ‖xτk − x‖2 + ‖aτk − a‖2
)
.

Theorem

Let Ω be a bounded convex subset of Rd. If E (%0,x0,a0) < +∞ and either

• Ω has a C 1 boundary,

• Ω has a Lipschitz boundary and the initial conditions satisfy xi(0) ∈ int Ω,

ai(0) > 0 for all i = 1, . . . , N

the interpolations of the JKO scheme (%τ ,xτ ,aτ )τ>0 admits subsequences

converging in C 0,1/2([0, 1],P(Ω)×Ω⊗N ×∆N−1) to a weak solution of (GradFlow).
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Convergence of the JKO scheme

Difficulties:

1. How to deal with the boundary effects when xi ∈ ∂Ω, specially for ∂Ω Lipschitz?

Can we expect a better behavior for the limit PDE?

2. How to characterize the derivative of ai as

ȧi = −g′(ai)− ψi(t)

when ai(t)→ 0 since g′(ai(t))→ +∞.
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Convergence of the JKO scheme

Solutions:

1. Uniform integrability of %τk+1: if aτi,k+1 > 0 and xτi,k ∈ int Ω, then xτi,k+1 ∈ int Ω

xk+1,i

xδ = PΩδ (xk+1,i)xk,i
Ω

Ωδ

δ

2.
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Convergence of the JKO scheme

Solutions:

2 If t 7→ ai(t) is a limit trajectory of the JKO, if holds that

ai(t) = 0, then ai(s) = 0 for all s > t

Hence it suffices to determine the dynamics of ai(·) over (0, ti)

ti
def.
= inf {t ≥ 0 : ai(t) = 0}
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Convergence of the JKO scheme: Strong L2
tH

1
x

Santambrogio et.al. proved recently strong L2
tH

2
x convergence of the JKO for Fokker

Planck with smooth potentials.4

Theorem

• When F (ρ) = ρ log ρ, the family (%τ )τ>0, up to subsequences, converges strongly

in L2
tH

1
x to %, where (%,x,a) is a solution to (GradFlow).

• When F (ρ) = 1
m−1ρ

m, the family of pressures ((%τ )m)τ>0, up to subsequences,

converges strongly in L2
tH

1
x to %m, where (%,x,a) is a solution to (GradFlow).

In particular, the JKO solution % ∈ L2([0, T ];H1(Ω))!

4Santambrogio and Toshpulatov, “Strong L2H2 Convergence of the JKO Scheme for the Fokker–Planck Equation”.
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Some qualitative properties

Theorem

• Assume ∂Ω is C 1. If ai(0) > 0 and xi(0) ∈ ∂Ω, then xi(t) ∈ int Ω for t > 0 small

enough.

xi is immediately pushed towards the interior.

• Assume ∂Ω is C 1 or that xi(0) ∈ int Ω. If xi(t) ∈ ∂Ω, then ai(t) = 0.

Particles can only be destroyed, but not created or split.
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Some qualitative properties

Proof by contradiction and

construction of an invariant region

for the dynamics

żi(t) = −ai(t)zi +
∫

Ωi(t,zi)
xd%t(x)︸ ︷︷ ︸

=ai(t)βi(t)

Ωδ

nD(y)

y ∈ ∂D

βi(t, y)

Ωi(t)

D

Ω δ
2
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Asymptotic Behavior

Previous remarks justify the long time study of a simpler equation, which can be seen

as a dynamic quantization equation
∂t%t = ∆%t + div

(
%t

N∑
i=1

(x− xi)1Ωi

)
ẋi = − 1

N
xi +

∫
Ωi

xd%t

The stationary measures are given by the following equilibrium criteria

d%∞(x) =
1

Z
e−Φ∞dx, where Φ∞(x) =

N∑
i=1

(
1

2
|x− xi,∞|2 − ψi,∞

)
1Ωi

xi,∞ = N

∫
Lagi(x∞,ψ∞)

xd%∞(x)

9/11



Asymptotic Behavior

Previous remarks justify the long time study of a simpler equation, which can be seen

as a dynamic quantization equation
∂t%t = ∆%t + div

(
%t

N∑
i=1

(x− xi)1Ωi

)
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Asymptotic Behavior: some heuristics

∫
Ω
‖∇ log %t +∇Φt‖2 d%t −−−→

t→∞
0 variant of Bakry-Émery method 5∥∥∥∥∥xi(t)−N

∫
Lagi(xt,ψt)

xd%t(x)

∥∥∥∥∥ −−−→t→∞
0 continuous dynamics of Loyd’s algorithm 6

5Dominique Bakry and Michel Émery. “Diffusions hypercontractives”. In: Séminaire de Probabilités XIX 1983/84: Proceedings. 2006.

6Quentin Merigot, Filippo Santambrogio, and Clement Sarrazin. “Non-asymptotic convergence bounds for Wasserstein approximation using point

clouds”. In: Advances in Neural Information Processing Systems (2021).
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Thanks for your attention !
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