On an equation for the evolution of an urban area

João Miguel Machado SMAI 2025: June 02, 2025

Lagrange Mathematics and Computing Research Center (LMCRC)

Population distributed as $\mathscr{P}(\Omega) \ni \varrho \to \min \int_{\Omega} F(\varrho(x)) dx + W_2^2 \left(\varrho, \sum_{i=1}^N a_i \delta_{x_i} \right)$

Population distributed as
$$\mathscr{P}(\Omega) \ni \varrho \to \min \int_{\Omega} F(\varrho(x)) dx + W_2^2 \left(\varrho, \sum_{i=1}^N a_i \delta_{x_i}\right)$$

Working sites given by $(\mathbf{x}, \mathbf{a}) \to \min W_2^2 \left(\varrho, \sum_{i=1}^N a_i \delta_{x_i}\right) + \sum_{i=1}^N g(a_i)$
where $\mathbf{x} = (x_i)_{i=1}^N \subset \Omega^{\otimes N}$, $\mathbf{a} = (a_i)_{i=1}^N \in \Delta_{N-1}$

Population distributed as
$$\rho \to \min \underbrace{\int_{\Omega} F(\rho(x)) dx}_{\text{congestion}} + \underbrace{W_2^2 \left(\rho, \sum_{i=1}^N a_i \delta_{x_i}\right)}_{\text{efficiency of placement}}$$

Working sites given by $(\mathbf{x}, \mathbf{a}) \to \min W_2^2 \left(\rho, \sum_{i=1}^N a_i \delta_{x_i}\right) + \sum_{i=1}^N g(a_i)$

Population distributed as
$$\underbrace{\int_{\Omega} F(\varrho(x)) dx}_{\text{congestion}} + \underbrace{W_2^2 \left(\varrho, \sum_{i=1}^N a_i \delta_{x_i}\right)}_{\text{efficiency of placement}}$$
Working sites distributed as $(\mathbf{x}, \mathbf{a}) \to \min W_2^2 \left(\varrho, \sum_{i=1}^N a_i \delta_{x_i}\right) + \underbrace{\sum_{i=1}^N g(a_i)}_{\text{efficiency of placement}} + \underbrace{\sum_{i=1}^N g(a_i)}_{\text{cost of operation}}$

(

Energy proposed by Buttazzo and Santambrogio for the configuration of urban areas¹

$$\mathscr{E}(\varrho, \mathbf{x}, \mathbf{a}) \stackrel{\text{\tiny def.}}{=} \int_{\Omega} F(\varrho(x)) \mathrm{d}x + \sum_{i=1}^{N} g(a_i) + W_2^2 \left(\varrho, \sum_{i=1}^{N} a_i \delta_{x_i}\right)$$

$$\mathscr{F}(\varrho) \stackrel{\text{\tiny def.}}{=} \int_{\Omega} F(\varrho(x)) \mathrm{d}x \to \text{ forces uniform integrability}$$

¹Giuseppe Buttazzo and Filippo Santambrogio. "A model for the optimal planning of an urban area". In: SIAM journal on mathematical analysis (2005).

Energy proposed by Buttazzo and Santambrogio for the configuration of urban areas¹

$$\mathscr{E}(\varrho, \mathbf{x}, \mathbf{a}) \stackrel{\text{def.}}{=} \int_{\Omega} F(\varrho(x)) \mathrm{d}x + \sum_{i=1}^{N} g(a_i) + W_2^2 \left(\varrho, \sum_{i=1}^{N} a_i \delta_{x_i}\right)$$
$$\mathscr{G}(\mu_{\mathbf{x}, \mathbf{a}}) \stackrel{\text{def.}}{=} \sum_{i=1}^{N} g(a_i) \rightarrow \text{ encourages economy of scale as } \lim_{t \to 0+} \frac{g(t)}{t} = +\infty$$

¹Giuseppe Buttazzo and Filippo Santambrogio. "A model for the optimal planning of an urban area". In: SIAM journal on mathematical analysis (2005).

Energy proposed by Buttazzo and Santambrogio for the configuration of urban areas¹

$$\mathscr{E}(\varrho, \mathbf{x}, \mathbf{a}) \stackrel{\text{def.}}{=} \int_{\Omega} F(\varrho(x)) \mathrm{d}x + \sum_{i=1}^{N} g(a_i) + W_2^2 \left(\varrho, \sum_{i=1}^{N} a_i \delta_{x_i}\right)$$
$$W_2^2(\mu, \nu) \stackrel{\text{def.}}{=} \min_{T_{\sharp} \mu = \nu} \frac{1}{2} \int_{\Omega} |x - T(x)|^2 \mathrm{d}\mu \to \text{ penalizes total transportation cost}$$

¹Giuseppe Buttazzo and Filippo Santambrogio. "A model for the optimal planning of an urban area". In: SIAM journal on mathematical analysis (2005).

A variational principal for the organization of urban areas

In the semi-discrete case we have the formation of Laguerre tesselations

$$W_2^2\left(\varrho, \sum_{i=1}^N a_i \delta_{x_i}\right) = \max_{\psi \in \mathbb{R}^N} \int_{\Omega} \min_{i=1,\dots,N} \left[\frac{1}{2}|x - x_i|^2 - \psi_i\right] \mathrm{d}\varrho + \sum_{i=1}^N a_i \psi_i$$

$$\begin{split} \Omega_i &= \mathrm{Lag}_i(\mathbf{x}, \psi) \\ &\stackrel{\text{\tiny def.}}{=} \left\{ x \in \Omega : \frac{1}{2} |x - x_i|^2 - \psi_i \leq \frac{1}{2} |x - x_j|^2 - \psi_j \text{ for all } j \right\} \end{split}$$

3/11

This is a static formulation

 $\min_{\varrho,\mathbf{x},\mathbf{a}} \mathscr{E}(\varrho,\mathbf{x},\mathbf{a})$

Consider the gradient flow of the energy ${\mathscr E}\,\ldots\,$

A dynamical model

Consider the gradient flow of the energy ${\mathscr E}\,\ldots\,$

$$\begin{split} \partial_t \varrho_t &= \operatorname{div} \left(\varrho_t \left(\nabla F'(\varrho_t) + \sum_{i=1}^N (x - x_i(t)) \mathbf{1}_{\Omega_i(t)} \right) \right) \\ 0 &= n_\Omega \cdot \left(\nabla F'(\varrho_t) + \sum_{i=1}^N (x - x_i(t)) \mathbf{1}_{\Omega_i(t)} \right) \\ \dot{x}_i &\in -a_i x_i + \int_{\Omega_i(t)} x \mathrm{d}\varrho_t + N_\Omega(x_i), \\ \dot{a}_i &= -g'(a_i) - \psi_i(t), \text{ over } a_i > 0, \\ 0 &= \sum_{i:a_i > 0} \psi_i(t) + \sum_{i:a_i > 0} g'(a_i), \quad \Omega_i(t) = \operatorname{Lag}_i(\psi_t, \mathbf{x}_t), \\ \psi_t &= (\psi_i(t))_{i=1}^N \text{ is a potential for } W_2^2(\varrho_t, \mu_t) \end{split}$$
(GradFlow)

A dynamical model

Consider the gradient flow of the energy ${\mathscr E}\,\ldots\,$

$$\begin{aligned} \partial_t \varrho_t &= \operatorname{div} \left(\varrho_t \left(\nabla F'(\varrho_t) + \sum_{i=1}^N (x - x_i(t)) \mathbf{1}_{\Omega_i(t)} \right) \right) \\ 0 &= n_\Omega \cdot \left(\nabla F'(\varrho_t) + \sum_{i=1}^N (x - x_i(t)) \mathbf{1}_{\Omega_i(t)} \right) \\ \dot{x}_i &\in -a_i x_i + \int_{\Omega_i(t)} x \mathrm{d}\varrho_t + N_\Omega(x_i), \\ \dot{a}_i &= -g'(a_i) - \psi_i(t), \text{ over } a_i > 0, \\ 0 &= \sum_{i:a_i > 0} \psi_i(t) + \sum_{i:a_i > 0} g'(a_i), \quad \Omega_i(t) = \operatorname{Lag}_i(\psi_t, \mathbf{x}_t), \\ \psi_t &= (\psi_i(t))_{i=1}^N \text{ is a potential for } W_2^2(\varrho_t, \mu_t) \end{aligned}$$

Consider the gradient flow of the energy $\mathscr{E}...$ or more simply

$$\partial_{t}\varrho_{t} = \operatorname{div}\left(\varrho_{t}\left(\nabla F'(\varrho_{t}) + \sum_{i=1}^{N} (x - x_{i}(t))\mathbf{1}_{\Omega_{i}(t)}\right)\right)$$

$$\dot{x}_{i} \in -a_{i}x_{i} + \int_{\Omega_{i}(t)} x \mathrm{d}\varrho_{t},$$

$$\dot{a}_{i} = -g'(a_{i}) - \psi_{i}(t), \text{ over } a_{i} > 0,$$

(GradFlow)

A dynamical model

Definition

We say $t \mapsto (\varrho_t, \mathbf{x}_t, \mathbf{a}_t) \in \mathscr{C}^0(\mathscr{P}_2 \times \Omega^{\otimes N} \times \Delta_{N-1})$ is a weak solution to (GradFlow) s.t. $F'(\varrho) \in L^1([0,T] \times W^{1,1}(\Omega))$, satisfying the boundary conditions and

•
$$0 = \int_0^T \int_\Omega \left(-\partial_t \phi + \nabla \phi \cdot \left[\nabla F'(\varrho_t) + \sum_{i=1}^N (x - x_{t,i}^\tau) \mathbf{1}_{\Omega_i(t)} \right] \right) d\varrho_t dt$$

for all $\phi \in \mathscr{C}_c^\infty((0,T) \times \Omega)$
•
$$-\int_0^T f'(t) \cdot x_{t,i} dt = -\int_0^T f(t) \cdot \left(a_{t,i} \cdot x_{t,i} - \int_{\Omega_{t,i}} x d\varrho_t \right) dt$$

for all $f \in \mathscr{C}_c^\infty((0,T), \mathbb{R}^d)$ and $i = 1, \dots, N$
•
$$-\int_0^T h'(t) a_i(t) dt = -\int_0^T h(t) \cdot (g'(a_i(t)) + \psi_i(t)) dt$$

for all $h \in \mathscr{C}_c^\infty((0,T))$ and $i = 1, \dots, N$

$$\varrho_{k+1}^{\tau} \in \operatorname{argmin} \mathscr{F}(\varrho) + \frac{1}{2\tau} W_2^2(\varrho_k^{\tau}, \varrho), \quad \varrho_t^{\tau} \stackrel{\text{\tiny def.}}{=} \varrho_{k+1}^{\tau} \text{ if } t \in (k\tau, (k+1)\tau]$$

 $^{^1}$ Jordan, Kinderlehrer, and Otto, "The variational formulation of the Fokker–Planck equation".

$$\varrho_{k+1}^{\tau} \in \operatorname{argmin} \mathscr{F}(\varrho) + \frac{1}{2\tau} W_2^2(\varrho_k^{\tau}, \varrho), \quad \varrho_t^{\tau} \stackrel{\text{\tiny def.}}{=} \varrho_{k+1}^{\tau} \text{ if } t \in (k\tau, (k+1)\tau]$$

Then we know that ϱ^{τ} converges to a weak solution of

$$\partial_t \varrho_t = \operatorname{div}\left(\varrho_t \nabla \frac{\delta \mathscr{F}}{\delta \varrho}(\varrho_t)\right), \quad n_\Omega \cdot \nabla \frac{\delta \mathscr{F}}{\delta \varrho}(\varrho_t) = 0$$

 $^{^1}$ Jordan, Kinderlehrer, and Otto, "The variational formulation of the Fokker–Planck equation".

$$\varrho_{k+1}^{\tau} \in \operatorname{argmin} \mathscr{F}(\varrho) + \frac{1}{2\tau} W_2^2(\varrho_k^{\tau}, \varrho), \quad \varrho_t^{\tau} \stackrel{\text{\tiny def.}}{=} \varrho_{k+1}^{\tau} \text{ if } t \in (k\tau, (k+1)\tau]$$

Then we know that ϱ^{τ} converges to a weak solution of

$$\mathscr{F}(\varrho) = \int_{\Omega} \varrho \log \varrho \mathrm{d}x, \quad \partial_t \varrho_t = \Delta \varrho \text{ Heat equation}$$

 $^{^1}$ Jordan, Kinderlehrer, and Otto, "The variational formulation of the Fokker–Planck equation".

$$\varrho_{k+1}^{\tau} \in \operatorname{argmin} \mathscr{F}(\varrho) + \frac{1}{2\tau} W_2^2(\varrho_k^{\tau}, \varrho), \quad \varrho_t^{\tau} \stackrel{\text{\tiny def.}}{=} \varrho_{k+1}^{\tau} \text{ if } t \in (k\tau, (k+1)\tau]$$

Then we know that ϱ^{τ} converges to a weak solution of

$$\mathscr{F}(\varrho) = \frac{1}{m-1} \int_{\Omega} \varrho^m \mathrm{d}x, \quad \partial_t \varrho_t = \Delta \varrho^m \text{ Porous medium equation}$$

 $^{^1}$ Jordan, Kinderlehrer, and Otto, "The variational formulation of the Fokker–Planck equation".

$$\varrho_{k+1}^{\tau} \in \operatorname{argmin} \mathscr{F}(\varrho) + \frac{1}{2\tau} W_2^2(\varrho_k^{\tau}, \varrho), \quad \varrho_t^{\tau} \stackrel{\text{\tiny def.}}{=} \varrho_{k+1}^{\tau} \text{ if } t \in (k\tau, (k+1)\tau]$$

Strategy used to show existence of solutions to other non-linear PDEs \bullet in crowd motion²

- for the total-variation flow³

¹Jordan, Kinderlehrer, and Otto, "The variational formulation of the Fokker–Planck equation".

²Maury et al., "Handling congestion in crowd motion modeling".

³Carlier and Poon, "On the total variation Wasserstein gradient flow and the TV-JKO scheme".

$$\begin{split} \left(\varrho_{k+1}^{\tau}, \mathbf{x}_{k+1}^{\tau}, \mathbf{a}_{k+1}^{\tau}\right)_{k \in \mathbb{N}} &\in \operatorname{argmin} \mathscr{F}(\varrho) + \mathscr{G}(\mu_{\mathbf{x}, \mathbf{a}}) + W_2^2(\varrho, \mu_{\mathbf{x}, \mathbf{a}}) \\ &+ \frac{1}{2\tau} \left(W_2^2(\varrho_k^{\tau}, \varrho) + \|\mathbf{x}_k^{\tau} - \mathbf{x}\|^2 + \|\mathbf{a}_k^{\tau} - \mathbf{a}\|^2 \right). \end{split}$$

Theorem

Let Ω be a bounded convex subset of \mathbb{R}^d . If $\mathscr{E}(\varrho_0, \mathbf{x}_0, \mathbf{a}_0) < +\infty$ and either

- Ω has a \mathscr{C}^1 boundary,
- Ω has a Lipschitz boundary and the initial conditions satisfy $x_i(0) \in \operatorname{int} \Omega$, $a_i(0) > 0$ for all $i = 1, \ldots, N$

the interpolations of the JKO scheme $(\varrho^{\tau}, \mathbf{x}^{\tau}, \mathbf{a}^{\tau})_{\tau>0}$ admits subsequences converging in $\mathscr{C}^{0,1/2}([0,1], \mathscr{P}(\Omega) \times \Omega^{\otimes N} \times \Delta_{N-1})$ to a weak solution of (GradFlow).

Difficulties:

- 1. How to deal with the boundary effects when $x_i \in \partial \Omega$, specially for $\partial \Omega$ Lipschitz? Can we expect a better behavior for the limit PDE?
- 2. How to characterize the derivative of a_i as

$$\dot{a}_i = -g'(a_i) - \psi_i(t)$$

when $a_i(t) \to 0$ since $g'(a_i(t)) \to +\infty$.

Solutions:

1. Uniform integrability of ϱ_{k+1}^{τ} : if $a_{i,k+1}^{\tau} > 0$ and $x_{i,k}^{\tau} \in \operatorname{int} \Omega$, then $x_{i,k+1}^{\tau} \in \operatorname{int} \Omega$

Solutions:

2 If $t \mapsto a_i(t)$ is a limit trajectory of the JKO, if holds that

$$a_i(t) = 0$$
, then $a_i(s) = 0$ for all $s > t$

Hence it suffices to determine the dynamics of $a_i(\cdot)$ over $(0, t_i)$

$$t_i \stackrel{\text{def.}}{=} \inf \left\{ t \ge 0 : a_i(t) = 0 \right\}$$

Santambrogio et.al. proved recently strong $L^2_t H^2_x$ convergence of the JKO for Fokker Planck with smooth potentials.^4

Theorem

- When $F(\rho) = \rho \log \rho$, the family $(\varrho^{\tau})_{\tau>0}$, up to subsequences, converges strongly in $L_t^2 H_x^1$ to ϱ , where $(\varrho, \mathbf{x}, \mathbf{a})$ is a solution to (GradFlow).
- When $F(\rho) = \frac{1}{m-1}\rho^m$, the family of pressures $((\varrho^{\tau})^m)_{\tau>0}$, up to subsequences, converges strongly in $L_t^2 H_x^1$ to ϱ^m , where $(\varrho, \mathbf{x}, \mathbf{a})$ is a solution to (GradFlow).

⁴Santambrogio and Toshpulatov, "Strong L^2H^2 Convergence of the JKO Scheme for the Fokker–Planck Equation".

Santambrogio et.al. proved recently strong $L^2_t H^2_x$ convergence of the JKO for Fokker Planck with smooth potentials.^4

Theorem

- When $F(\rho) = \rho \log \rho$, the family $(\varrho^{\tau})_{\tau>0}$, up to subsequences, converges strongly in $L_t^2 H_x^1$ to ϱ , where $(\varrho, \mathbf{x}, \mathbf{a})$ is a solution to (GradFlow).
- When $F(\rho) = \frac{1}{m-1}\rho^m$, the family of pressures $((\varrho^{\tau})^m)_{\tau>0}$, up to subsequences, converges strongly in $L_t^2 H_x^1$ to ϱ^m , where $(\varrho, \mathbf{x}, \mathbf{a})$ is a solution to (GradFlow).

In particular, the JKO solution $\varrho \in L^2([0,T]; H^1(\Omega))!$

 $^{^4}$ Santambrogio and Toshpulatov, "Strong L^2H^2 Convergence of the JKO Scheme for the Fokker–Planck Equation".

Theorem

• Assume $\partial \Omega$ is \mathscr{C}^1 . If $a_i(0) > 0$ and $x_i(0) \in \partial \Omega$, then $x_i(t) \in \operatorname{int} \Omega$ for t > 0 small enough.

 x_i is immediately pushed towards the interior.

• Assume $\partial \Omega$ is \mathscr{C}^1 or that $x_i(0) \in \operatorname{int} \Omega$. If $x_i(t) \in \partial \Omega$, then $a_i(t) = 0$. Particles can only be destroyed, but not created or split. Proof by contradiction and construction of an invariant region for the dynamics

$$\dot{z}_i(t) = -a_i(t)z_i + \underbrace{\int_{\Omega_i(t,z_i)} x \mathrm{d}\varrho_t(x)}_{=a_i(t)\beta_i(t)}$$

Previous remarks justify the long time study of a simpler equation, which can be seen as a dynamic quantization equation

$$\begin{cases} \partial_t \varrho_t = \Delta \varrho_t + \operatorname{div} \left(\varrho_t \sum_{i=1}^N (x - x_i) \mathbf{1}_{\Omega_i} \right) \\ \dot{x}_i = -\frac{1}{N} x_i + \int_{\Omega_i} x \mathrm{d}\varrho_t \end{cases}$$

Previous remarks justify the long time study of a simpler equation, which can be seen as a dynamic quantization equation

$$\begin{cases} \partial_t \varrho_t = \Delta \varrho_t + \operatorname{div}\left(\varrho_t \sum_{i=1}^N (x - x_i) \mathbf{1}_{\Omega_i}\right) \\ \dot{x}_i = -\frac{1}{N} x_i + \int_{\Omega_i} x \mathrm{d}\varrho_t \end{cases}$$

The stationary measures are given by the following equilibrium criteria

$$d\varrho_{\infty}(x) = \frac{1}{Z} e^{-\Phi_{\infty}} dx, \text{ where } \Phi_{\infty}(x) = \sum_{i=1}^{N} \left(\frac{1}{2} |x - x_{i,\infty}|^2 - \psi_{i,\infty}\right) \mathbf{1}_{\Omega_i}$$
$$x_{i,\infty} = N \int_{\operatorname{Lag}_i(\mathbf{x}_{\infty},\psi_{\infty})} x d\varrho_{\infty}(x)$$

$$\int_{\Omega} \|\nabla \log \varrho_t + \nabla \Phi_t\|^2 \, \mathrm{d} \varrho_t \xrightarrow[t \to \infty]{} 0$$
$$\left\| x_i(t) - N \int_{\mathrm{Lag}_i(\mathbf{x}_t, \psi_t)} x \mathrm{d} \varrho_t(x) \right\| \xrightarrow[t \to \infty]{} 0$$

variant of Bakry-Émery method ⁵

continuous dynamics of Loyd's algorithm ⁶

⁵Dominique Bakry and Michel Émery. "Diffusions hypercontractives". In: Séminaire de Probabilités XIX 1983/84: Proceedings. 2006.

⁶Quentin Merigot, Filippo Santambrogio, and Clement Sarrazin. "Non-asymptotic convergence bounds for Wasserstein approximation using point clouds". In: Advances in Neural Information Processing Systems (2021).

Thanks for your attention !