Machine-efficient polynomial approximation

Nicolas Brisebarre Sylvain Chevillard Guillaume Hanrot Tom Hubrecht Serge Torres

SMAI 2025

Evaluation of Elementary Functions

 $\exp, \ln, \cos, \sin, \arctan, \sqrt{-}, \dots$

(Binary) Floating Point (FP) Arithmetic

Given

 $\left\{ \begin{array}{ll} \text{a precision} & p \geqslant 1, \\ \text{a set of exponents} & E_{\min}, \cdots, E_{\max}. \end{array} \right.$

A finite FP number \boldsymbol{x} is represented by 2 integers:

- integer significand M, $2^{p-1} \leq |M| \leq 2^p 1$,
- exponent E, $E_{\min} \leqslant E \leqslant E_{\max}$

such that

$$x = \frac{M}{2^{p-1}} \times 2^E$$

IEEE 754 standard (1984 then 2008).

See http://en.wikipedia.org/wiki/IEEE_floating_point

	precision p	min. exponent	maximal exponent
		$E_{\sf min}$	$E_{\sf max}$
binary32 (single)	24	-126	127
binary64 (double)	53	-1022	1023
extended double	64	-16382	16383
binary128 (quadruple)	113	-16382	16383

We have $x = \frac{M}{2^{p-1}} \times 2^E$ with $2^{p-1} \leq |M| \leq 2^p - 1$

and $E_{\min} \leqslant E \leqslant E_{\max}$.

 $\exp, \ln, \cos, \sin, \arctan, \sqrt{-}, \dots$

Goal: evaluation of φ to a given accuracy η .

• Step 1. Argument reduction (Payne & Hanek, Ng, Daumas *et al*): evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R} is reduced to the evaluation of a function f over [a, b].

- Step 1. Argument reduction (Payne & Hanek, Ng, Daumas *et al*): evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R} is reduced to the evaluation of a function f over [a, b].
- Step 2. Computation of p^* , a "machine-efficient" polynomial approximation of f.

- Step 1. Argument reduction (Payne & Hanek, Ng, Daumas *et al*): evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R} is reduced to the evaluation of a function f over [a, b].
- Step 2. Computation of p^{*}, a "machine-efficient" polynomial approximation of f.
- Step 3. Computation of a rigorous approximation error $||f p^{\star}||$.

- Step 1. Argument reduction (Payne & Hanek, Ng, Daumas *et al*): evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R} is reduced to the evaluation of a function f over [a, b].
- Step 2. Computation of p^* , a "machine-efficient" polynomial approximation of f.
- Step 3. Computation of a rigorous approximation error $||f p^*||$.
- Step 4. Computation of a certified evalutation error of p^* : GAPPA (G. Melquiond).

The floating-point operations $+, -, \times$ are very fast.

The floating-point operations $+, -, \times$ are very fast.

We have very fine approximation and evaluation schemes for polynomials.

The floating-point operations $+, -, \times$ are very fast.

We have very fine approximation and evaluation schemes for polynomials.

 \implies Let's use polynomials!

Reminder. Let $g : [a, b] \to \mathbb{R}$, $||g||_{\infty,[a,b]} = \sup_{a \leqslant x \leqslant b} |g(x)|$. We denote $\mathbb{R}_n[X] = \{p \in \mathbb{R}[X]; \deg p \leqslant n\}.$ Reminder. Let $g : [a, b] \to \mathbb{R}$, $||g||_{\infty,[a,b]} = \sup_{a \leqslant x \leqslant b} |g(x)|$. We denote $\mathbb{R}_n[X] = \{p \in \mathbb{R}[X]; \deg p \leqslant n\}.$

Minimax approximation: let $f:[a,b]\to\mathbb{R},\ n\in\mathbb{N},$ we search for $p\in\mathbb{R}_n[X]$ s.t.

$$||p - f||_{\infty,[a,b]} = \inf_{q \in \mathbb{R}_n[X]} ||q - f||_{\infty,[a,b]}.$$

Degree-3 minimax approximation to cos

Chebyshev's theorem (1902).

Degree-3 minimax approximation to cos

Chebyshev/Borel's theorem (1902).

Degree-3 minimax approximation to cos

Chebyshev/Borel/Kirchberger's theorem (1902).

Reminder. Let $g:[a,b] \to \mathbb{R}$, $||g||_{\infty,[a,b]} = \sup_{a \leqslant x \leqslant b} |g(x)|$.

We denote $\mathbb{R}_n[X] = \{p \in \mathbb{R}[X]; \deg p \leq n\}.$

Minimax approximation: let $f:[a,b]\to\mathbb{R},\ n\in\mathbb{N},$ we search for $p\in\mathbb{R}_n[X]$ s.t.

$$||p - f||_{\infty,[a,b]} = \inf_{q \in \mathbb{R}_n[X]} ||q - f||_{\infty,[a,b]}.$$

Reminder. Let $g:[a,b] \to \mathbb{R}$, $||g||_{\infty,[a,b]} = \sup_{a \leqslant x \leqslant b} |g(x)|$.

We denote $\mathbb{R}_n[X] = \{p \in \mathbb{R}[X]; \deg p \leq n\}.$

Minimax approximation: let $f:[a,b]\to\mathbb{R},\ n\in\mathbb{N}$, we search for $p\in\mathbb{R}_n[X]$ s.t.

$$||p - f||_{\infty,[a,b]} = \inf_{q \in \mathbb{R}_n[X]} ||q - f||_{\infty,[a,b]}.$$

An algorithm due to Remez (1934) gives p (minimax function in Maple, remez function in Sollya http://sollya.gforge.inria.fr/).

Reminder. Let $g:[a,b] \to \mathbb{R}$, $||g||_{\infty,[a,b]} = \sup_{a \leqslant x \leqslant b} |g(x)|$.

We denote $\mathbb{R}_n[X] = \{p \in \mathbb{R}[X]; \deg p \leq n\}.$

Minimax approximation: let $f:[a,b]\to\mathbb{R},\ n\in\mathbb{N}$, we search for $p\in\mathbb{R}_n[X]$ s.t.

$$||p - f||_{\infty,[a,b]} = \inf_{q \in \mathbb{R}_n[X]} ||q - f||_{\infty,[a,b]}.$$

An algorithm due to Remez (1934) gives p (minimax function in Maple, remez function in Sollya http://sollya.gforge.inria.fr/).

Problem: we can't directly use minimax approx. in a computer since the coefficients of p can't be represented on a finite number of bits.

Let $m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers. Let

 $\mathcal{P}_n^m = \{q = q_0 + q_1 x + \dots + q_n x^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$

Let $m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers. Let

 $\mathcal{P}_n^m = \{q = q_0 + q_1 x + \dots + q_n x^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$

Question: find $p^* \in \mathcal{P}_n^m$ which minimizes $\|f - q\|_{\infty}$, $q \in \mathcal{P}_n^m$.

Let $m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers. Let

 $\mathcal{P}_n^m = \{q = q_0 + q_1 x + \dots + q_n x^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$

Question: find $p^{\star} \in \mathcal{P}_n^m$ which minimizes $\|f - q\|_{\infty}$, $q \in \mathcal{P}_n^m$.

First idea. Remez $\rightarrow p(x) = p_0 + p_1 x + \dots + p_n x^n$. Every p_i rounded to $\hat{a}_i/2^{m_i}$, the nearest integer multiple of $2^{-m_i} \rightarrow \hat{p}(x) = \frac{\hat{a}_0}{2^{m_0}} + \frac{\hat{a}_1}{2^{m_1}}x + \dots + \frac{\hat{a}_n}{2^{m_n}}x^n$.

Let $m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers. Let

 $\mathcal{P}_n^m = \{q = q_0 + q_1 x + \dots + q_n x^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$

Question: find $p^* \in \mathcal{P}_n^m$ which minimizes $||f - q||_{\infty}$, $q \in \mathcal{P}_n^m$.

First idea. Remez $\rightarrow p(x) = p_0 + p_1 x + \dots + p_n x^n$. Every p_i rounded to $\hat{a}_i/2^{m_i}$, the nearest integer multiple of $2^{-m_i} \rightarrow \hat{p}(x) = \frac{\hat{a}_0}{2^{m_0}} + \frac{\hat{a}_1}{2^{m_1}}x + \dots + \frac{\hat{a}_n}{2^{m_n}}x^n$.

Problem: \hat{p} not necessarily a minimax approx. of f among the polynomials of \mathcal{P}_n^m .

Maple or Sollya tell us that the polynomial

 $p = 0.9998864206 + 0.00469021603x - 0.5303088665x^2 + 0.06304636099x^3$

is ~ the best approximant to cos. We have $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879....$

We look for $a_0, a_1, a_2, a_3 \in \mathbb{Z}$ such that

$$\max_{0 \le x \le \pi/4} \left| \cos x - \left(\frac{a_0}{2^{12}} + \frac{a_1}{2^{10}}x + \frac{a_2}{2^6}x^2 + \frac{a_3}{2^4}x^3 \right) \right|$$

is minimal.

Maple or Sollya tell us that the polynomial

 $p = 0.9998864206 + 0.00469021603x - 0.5303088665x^2 + 0.06304636099x^3$

is ~ the best approximant to cos. We have $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879....$

We look for $a_0, a_1, a_2, a_3 \in \mathbb{Z}$ such that

$$\max_{0 \le x \le \pi/4} \left| \cos x - \left(\frac{a_0}{2^{12}} + \frac{a_1}{2^{10}}x + \frac{a_2}{2^6}x^2 + \frac{a_3}{2^4}x^3 \right) \right|$$

is minimal.

The naive approach gives the polynomial

$$\hat{p} = \frac{2^{12}}{2^{12}} + \frac{5}{2^{10}}x - \frac{34}{2^6}x^2 + \frac{1}{2^4}x^3.$$

We have $\hat{\varepsilon} = ||\cos - \hat{p}||_{[0,\pi/4]} = 0.00069397....$

Maple or Sollya computes a polynomial p which is \sim the best approximant to \cos . We have $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$. We look for $a_0, a_1, a_2, a_3 \in \mathbb{Z}$ such that

$$\max_{0 \leqslant x \leqslant \pi/4} \left| \cos x - \left(\frac{a_0}{2^{12}} + \frac{a_1}{2^{10}}x + \frac{a_2}{2^6}x^2 + \frac{a_3}{2^4}x^3 \right) \right|$$

is minimal.

The naive approach gives the polynomial \hat{p} and $\hat{\varepsilon} = ||\cos -\hat{p}||_{[0,\pi/4]} = 0.00069397...$

Maple or Sollya computes a polynomial p which is \sim the best approximant to \cos . We have $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$. We look for $a_0, a_1, a_2, a_3 \in \mathbb{Z}$ such that

$$\max_{0 \le x \le \pi/4} \left| \cos x - \left(\frac{a_0}{2^{12}} + \frac{a_1}{2^{10}}x + \frac{a_2}{2^6}x^2 + \frac{a_3}{2^4}x^3 \right) \right|$$

is minimal.

The naive approach gives the polynomial \hat{p} and $\hat{\varepsilon} = ||\cos - \hat{p}||_{[0,\pi/4]} = 0.00069397...$ But the best "constrained" approximant:

$$p^{\star} = \frac{4095}{2^{12}} + \frac{6}{2^{10}} x - \frac{34}{2^6} x^2 + \frac{1}{2^4} x^3$$

which gives $||\cos -p^{\star}||_{[0,\pi/4]} = 0.0002441406250.$

In this example, we gain $-\log_2(0.35) \approx 1.5$ bits of accuracy.

We're given [a,b], $f:[a,b]\mapsto \mathbb{R}$ and $m=(m_i)_{0\leqslant i\leqslant n}$ a finite sequence of rational integers. Let

 $\mathcal{P}_n^m = \{q = q_0 + q_1 x + \dots + q_n x^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$ Question: find $a_0^{\star}, \dots, a_n^{\star} \in \mathbb{Z}$ s.t.

$$p^{\star} = a_0^{\star} \underbrace{\frac{1}{2^{m_0}}}_{e_0(x)} + a_1^{\star} \underbrace{\frac{x}{2^{m_1}}}_{e_1(x)} + \dots + a_n^{\star} \underbrace{\frac{x^n}{2^{m_n}}}_{e_n(x)}$$
minimizes $\|f - q\|_{\infty}, q \in \mathcal{P}_n^m$.

An Approach via Lattice Basis Reduction

An Approach via Lattice Basis Reduction

Definition

Let L be a nonempty subset of \mathbb{R}^d , L is a lattice iff there exists a set of vectors $b_1, \ldots, b_k \mathbb{R}$ -linearly independent such that

 $L = \mathbb{Z}.b_1 \oplus \cdots \oplus \mathbb{Z}.b_k.$

 (b_1,\ldots,b_k) is a basis of the lattice L.

Examples. \mathbb{Z}^d , every subgroup of \mathbb{Z}^d .

An Approach via Lattice Basis Reduction

Definition

Let L be a nonempty subset of \mathbb{R}^d , L is a lattice iff there exists a set of vectors $b_1, \ldots, b_k \mathbb{R}$ -linearly independent such that

 $L = \mathbb{Z}.b_1 \oplus \cdots \oplus \mathbb{Z}.b_k.$

 (b_1,\ldots,b_k) is a basis of the lattice L.

Examples. \mathbb{Z}^d , every subgroup of \mathbb{Z}^d . *L* is equipped with $|(y_i)_{1 \leq i \leq d}|_2 = (\sum_{i=1}^d y_i^2)^{1/2}$ for all $(y_i)_{1 \leq i \leq d} \in \mathbb{R}^d$.

Example: The Lattice $\mathbb{Z}(2,0)\oplus\mathbb{Z}(1,2)$

Example: The Lattice $\mathbb{Z}(2,0)\oplus\mathbb{Z}(1,2)$

Example: The Lattice $\mathbb{Z}(2,0)\oplus\mathbb{Z}(1,2)$

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem)

Example: The Lattice $\mathbb{Z}(2,0) \oplus \mathbb{Z}(1,2)$

 SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are NP-hard.

 SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are NP-hard.

 SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are NP-hard.

Factoring Polynomials with Rational Coefficients, A. K. LENSTRA, H. W. LENSTRA AND L. LOVÁSZ, Math. Annalen **261**, 515-534, 1982.

The LLL algorithm gives an approximate solution to SVP in polynomial time.

Babai's algorithm (based on LLL) gives an approximate solution to CVP in polynomial time.

Given $f: [-1,1] \mapsto \mathbb{R}$ and $m_0, \ldots, m_n \in \mathbb{Z}$, we search for (one of the) best(s) polynomial of the form

$$p^{\star} = \frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}X + \dots + \frac{a_n^{\star}}{2^{m_n}}X^n$$

where $a_i^{\star} \in \mathbb{Z}$ that minimizes $\|f - p\|_{\infty}$.

$$p^{\star} = \frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}X + \dots + \frac{a_n^{\star}}{2^{m_n}}X^n$$

where $a_i^{\star} \in \mathbb{Z}$ that minimizes $\|f - p\|_{\infty}$.

First step: replace $||g||_{\infty}$ with $||g||_2 = \left(\int_{-1}^{1} g(x)^2 \frac{\mathrm{d}x}{\sqrt{1-x^2}}\right)^{1/2}$.

$$p^{\star} = \frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}x + \dots + \frac{a_n^{\star}}{2^{m_n}}x^n$$

where $a_i^{\star} \in \mathbb{Z}$ which minimizes

$$||f - p||_2 = \left(\int_{-1}^1 (f(x) - p(x))^2 \frac{\mathrm{d}x}{\sqrt{1 - x^2}}\right)^{1/2}.$$

$$p^{\star} = a_0^{\star} \underbrace{\frac{1}{2^{m_0}}}_{e_0(x)} + a_1^{\star} \underbrace{\frac{x}{2^{m_1}}}_{e_1(x)} + \dots + a_n^{\star} \underbrace{\frac{x^n}{2^{m_n}}}_{e_n(x)}$$

where $a_i^{\star} \in \mathbb{Z}$ which minimizes

$$||f - p||_2 = \left(\int_{-1}^1 (f(x) - p(x))^2 \frac{\mathrm{d}x}{\sqrt{1 - x^2}}\right)^{1/2}.$$

where $a_i^{\star} \in \mathbb{Z}$ which minimizes

$$||f - p||_2 = ||f - p_{\mathbb{R}_n[x]}(f)||_2 + ||p_{\mathbb{R}_n[x]}(f) - p||_2$$

where $p_{\mathbb{R}_n[x]}(f)$: orthogonal projection of f onto $\mathbb{R}_n[x]$. Let $p_{\mathbb{R}_n[x]}(f) = \sum_{i=0}^n f_i e_i(x)$.

$$p^{\star} = a_0^{\star} \underbrace{\frac{1}{2^{m_0}}}_{e_0(x)} + a_1^{\star} \underbrace{\frac{x}{2^{m_1}}}_{e_1(x)} + \dots + a_n^{\star} \underbrace{\frac{x^n}{2^{m_n}}}_{e_n(x)}$$

where $a_i^\star \in \mathbb{Z}$ which minimizes

$$\|p_{\mathbb{R}_n[x]}(f) - p\|_2 = \left(\int_{-1}^1 (p_{\mathbb{R}_n[x]}(f) - p(x))^2 \frac{\mathrm{d}x}{\sqrt{1 - x^2}}\right)^{1/2}$$

where $p_{\mathbb{R}_n[x]}(f)$: orthogonal projection of f onto $\mathbb{R}_n[x]$. Let $p_{\mathbb{R}_n[x]}(f) = \sum_{i=0}^n f_i e_i(x)$.

We wish to minimize

$$\|p_{\mathbb{R}_n[x]}(f) - p^{\star}\|_2 = \|\sum_{i=0}^n (f_i - a_i^{\star})e_i(x)\|_2$$

where $p_{\mathbb{R}_n[x]}(f) = \sum_{i=0}^n f_i e_i(x)$ and $a_0^{\star}, \ldots, a_n^{\star} \in \mathbb{Z}$.

We wish to minimize

$$\|p_{\mathbb{R}_n[x]}(f) - p^{\star}\|_2 = \|\sum_{i=0}^n (f_i - a_i^{\star})e_i(x)\|_2$$

where $p_{\mathbb{R}_n[x]}(f) = \sum_{i=0}^n f_i e_i(x)$ and $a_0^{\star}, \ldots, a_n^{\star} \in \mathbb{Z}$.

Let $G = ((e_i|e_j))_{0 \le i,j \le n}$, let M such that $G = M^t M$ (Cholesky decomposition). Actually,

$$||p_{\mathbb{R}_n[x]}(f) - p^{\star}||_2 = |Ma^{\star} - v|_2$$

where $a^{\star} = (a_j^{\star})_{0 \leqslant j \leqslant n} \in \mathbb{Z}^{n+1}$ and $v = (M^t)^{-1} (f_j)_{0 \leqslant j \leqslant n}$.

We wish to minimize

$$\|p_{\mathbb{R}_n[x]}(f) - p^{\star}\|_2 = \|\sum_{i=0}^n (f_i - a_i^{\star})e_i(x)\|_2$$

where $p_{\mathbb{R}_n[x]}(f) = \sum_{i=0}^n f_i e_i(x)$ and $a_0^{\star}, \ldots, a_n^{\star} \in \mathbb{Z}$.

Let $G = ((e_i|e_j))_{0 \le i,j \le n}$, let M such that $G = M^t M$ (Cholesky decomposition). Actually,

$$||p_{\mathbb{R}_n[x]}(f) - p^{\star}||_2 = |Ma^{\star} - v|_2$$

where $a^{\star} = (a_j^{\star})_{0 \leq j \leq n} \in \mathbb{Z}^{n+1}$ and $v = (M^t)^{-1} (f_j)_{0 \leq j \leq n}$.

This is a closest vector problem in a lattice!

It is NP-hard: LLL algorithm gives an approximate solution.

A question from the numerics group of Intel Portland.

Each approximant is of the form

where the p_i are all double precision numbers (d.).

A question from the numerics group of Intel Portland.

Each approximant is of the form

where the p_i are all double precision numbers (d.).

Here, we minimize the relative error

A question from the numerics group of Intel Portland.

Each approximant is of the form

where the p_i are all double precision numbers (d.).

binary logarithm of the relative error of several approximants

Minimax	-65.41
Rounded minimax	-56.59
Our polynomial	-65.08

A question from the numerics group of Intel Portland.

Each approximant is of the form

where the p_i are all double precision numbers (d.).

binary logarithm of the relative error of several approximants

Minimax	-65.41
Rounded minimax	-56.59
Our polynomial	-65.08

We save 8 bits with our method.

Very nice work by D. Arzelier, F. Bréhard, T. Hubrecht and M. Joldes who minimize both the approximation and evaluation errors.