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Evaluation of Elementary Functions

exp, In, cos, sin, arctan, /. ..

Goal: evaluation of ¢ to a given accuracy 7.
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(Binary) Floating Point (FP) Arithmetic

Given

a set of exponents F_: .- - Emax.

{ a precision p=>1,
min>

A finite FP number x is represented by 2 integers:
e integer significand M, 2P~ 1 < [M| < 2P — 1,

@ exponent I, E.., < F < Emax
such that M
/1
r= —— X 2E
opr—1
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|[EEE Precisions

IEEE 754 standard (1984 then 2008).
See http://en.wikipedia.org/wiki/IEEE _floating point

precision p | min. exponent | maximal exponent
Emin Emax
binary32 (single) 24 —126 127
binary64 (double) 53 —1022 1023
extended double 64 —16382 16383
binary128 (quadruple) 113 —16382 16383

We have z = 2, x 27 with 2P~ < |[M| <27 — 1

2r—1

and Fi,

< E < Pmax.
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Evaluation of Elementary Functions

exp, In, cos, sin, arctan, /. ..

Goal: evaluation of ¢ to a given accuracy 7.
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@ Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ¢ over R or a subset of R is reduced to the
evaluation of a function [ over [a, b].
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Evaluation of Elementary Functions

exp, In, cos, sin, arctan, /. ..

Goal: evaluation of ¢ to a given accuracy 7.

@ Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ¢ over R or a subset of R is reduced to the
evaluation of a function [ over [a, b].

@ Step 2. Computation of p*, a “machine-efficient” polynomial
approximation of f.

e Step 3. Computation of a rigorous approximation error || — p*||.

o Step 4. Computation of a certified evalutation error of p*: GAPPA
(G. Melquiond).
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Why Use Polynomial Approximation?

The floating-point operations +, —, X, /, |/ are as accurate as possible
(correct rounding).
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Why Use Polynomial Approximation?

The floating-point operations +, —, X, /, |/ are as accurate as possible
(correct rounding).

The floating-point operations +, —, x are very fast.
We have very fine approximation and evaluation schemes for polynomials.

= Let's use polynomials!
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Reminder. Let g : [a,0] — R, [|g]|oc,[a,t] = SUP,<och [9(2)]-
We denote R, [X] = {p € R[X];degp < n}.
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Minimax Approximation

Reminder. Let g : [a,0] — R, [|g]|oc,[a,t] = SUP,<och [9(2)]-
We denote R, [X] = {p € R[X];degp < n}.
Minimax approximation: let f : [a,b] — R, n € N, we search for

p € R,[X] s.t.

- — inf g .
P — flloo,[a,b] qekli[X]Hq Flloo,fa,b]
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Minimax Approximation

Degree-3 minimax approximation to cos

0.00010

0.00005-

—0.000054

—0.000104

Chebyshev's theorem (1902).
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Minimax Approximation

Degree-3 minimax approximation to cos

0.00010

0.00005-

x o= o

—0.000054

—0.000104

Chebyshev/Borel's theorem (1902).

8 / 23



Minimax Approximation

Degree-3 minimax approximation to cos

0.00010

0.00005-

—0.000054

—0.000104

Chebyshev/Berel/Kirchberger's theorem (1902).
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Minimax Approximation

|gHoo,[a,b] = SUPq<a<b |g(‘L')|

Reminder. Let g : [a,b] — R,
We denote R, [X] = {p € R[X];degp < n}.
Minimax approximation: let f : [a,b] — R, n € N, we search for

p € R,[X] s.t.

- oo,[a,b] — inf - oo, [a,b]*
1P = Flloo,a,b) qeﬁg[x]\lq Flloo,a,0)
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http://sollya.gforge.inria.fr/

Minimax Approximation

|gHoo,[a,b] = Supugzz:gb |g(‘l)|
We denote R, [X] = {p € R[X];degp < n}.

Minimax approximation: let f : [a,b] — R, n € N, we search for
p € R,[X] s.t.

Reminder. Let g : [a,b] — R,

- oo,[a,b] — inf - oo, [a,b]*
1P = Flloo,a,b) qeﬁa[x]\lq Flloo,a,0)

An algorithm due to Remez (1934) gives p (minimax function in Maple,
remez function in Sollya http://sollya.gforge.inria.fr/).
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Minimax Approximation

Reminder. Let g : [a,b] — R,

|gHoo,[a,b] = SUPq<a<h |g(‘l)|
We denote R, [X] = {p € R[X];degp < n}.
Minimax approximation: let f : [a,b] — R, n € N, we search for

p € R,[X] s.t.

- oo,[a,b] — inf - oo, [a,b]*
1P = Flloo,a,b) qeﬁ[x]\lq Flloo,a,0)

An algorithm due to Remez (1934) gives p (minimax function in Maple,
remez function in Sollya http://sollya.gforge.inria.fr/).

Problem: we can't directly use minimax approx. in a computer since the
coefficients of p can't be represented on a finite number of bits.
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Machine-efficient Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.
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Pr={qg=qo+qz+- - + qa" € R,[X]; q; integer multiple of 27 Vi}.

Question: find p* € P! which minimizes || f — ¢, ¢ € P}

First idea. Remez — p(x) = po + p1x + -+ + ppa™. Every p; rounded
to a; /2", the nearest integer multiple of 27 —
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p(z)
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Machine-efficient Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.

Let m = (m;)o<i<n a finite sequence of rational integers. Let

Pr={qg=qo+qz+- - + qa" € R,[X]; q; integer multiple of 27 Vi}.

Question: find p* € P! which minimizes || f — ¢, ¢ € P}

n

First idea. Remez — p(x) = po + p1x + -+ + ppa™. Every p; rounded
to a; /2", the nearest integer multiple of 27 —

Al ) — &0 &1 P &n P

p(‘l> - 2mo 2m z+ + 2my L

Problem: p not necessarily a minimax approx. of f among the
polynomials of P

n
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Approximation of the Function cos over [0, 7/4] by a
Degree-3 Polynomial

Maple or Sollya tell us that the polynomial
p = 0.9998864206 + 0.00469021603z — 0.530308866522 + 0.0630463609923

is ~ the best approximant to cos. We have
e = || cos —p||j0,x/4) = 0.0001135879....

We look for aq, a1, as,as € Z such that

Qg ay az as
max ‘cosx — (3 + 5107 -+ —61'2 + —4x3
o<z<n/4 2 2 2 2

is minimal.
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Approximation of the Function cos over [0, 7/4] by a
Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ~ the best
approximant to cos. We have ¢ = || cos —p||(g,x/4) = 0.0001135879....
We look for ag, a1, as,as € Z such that

az o Qa3 3

. ao a1
oen X \CM - (ﬁ Ton? T gt T )\

is minimal.

The naive approach gives the polynomial p and
€ = || cos —pl|{0,x/4) = 0.00069397...
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Approximation of the Function cos over [0, 7/4] by a
Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ~ the best
approximant to cos. We have ¢ = || cos —p||(g,x/4) = 0.0001135879....
We look for ag, a1, as,as € Z such that
. ag a1 az o A3 3

oz, [oosa = (55 + goo + oo + 5i2°)
is minimal.
The naive approach gives the polynomial p and
& = | cos =pl]j0,x /4] = 0.00069397... But the best “constrained”
approximant:

*

L4095 6 34, 1
“ o ot Tt
which gives || cos —p*||o,x/4) = 0.0002441406250.

In this example, we gain —log,(0.35) ~ 1.5 bits of accuracy.
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Back to our Problem

We're given [a,b], f : [a,b] — R and m = (m;)o<i<n a finite sequence of
rational integers.
Let

Pr={qg=qo+qz+- - + qa" € R,[X]; q; integer multiple of 27 Vi}.

Question: find afy,...,a} € Z s.t.
1 T "
x % * o *
p = ao 92mo +a1 m1 + + a" 9QmMy
~ N~ ~—
eo(z) e1(x) en(z)

minimizes || f —q||... ¢ € P}
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An Approach via Lattice Basis Reduction
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An Approach via Lattice Basis Reduction

Let L. be a nonempty subset of R?, L is a lattice iff there exists a set of
vectors by, ..., b, R-linearly independent such that

L=7b® ®Z.b.

(b1, ...,by) is a basis of the lattice L.

Examples. Z?, every subgroup of Z<.
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An Approach via Lattice Basis Reduction

Let L. be a nonempty subset of R?, L is a lattice iff there exists a set of
vectors by, ..., b, R-linearly independent such that

L=7b® ®Z.b.

(b1, ...,by) is a basis of the lattice L.

Examples. Z?, every subgroup of Z<.

L is equipped with |(y;)1<i<dl2 = (Zle y2)1/? for all (y;)1<ica € RY.
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Example: The Lattice Z(2,0) & Z(1,2)
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17 / 23



Example: The Lattice Z(2,0) & Z(1,2)

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.
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Lenstra-Lenstra-Lovasz Algorithm

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.
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Lenstra-Lenstra-Lovasz Algorithm

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.

Factoring Polynomials with Rational Coefficients, A. K. LENSTRA, H.
W. LENSTRA AND L. LOVAsz, Math. Annalen 261, 515-534, 1982.
The LLL algorithm gives an approximate solution to SVP in polynomial

time.

Babai's algorithm (based on LLL) gives an approximate solution to CVP
in polynomial time.
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Absolute Error Problem

Given f : [—1,1] — R and mo, ..., m,, € Z, we search for (one of the)

best(s) polynomial of the form

*

* *
*x a0+alX+---+ a’an

T 9mo | 9my oMo,

p

where af € Z that minimizes ||f — p||s.
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Absolute Error Problem

Given f : [—1,1] — R and mo, ..., my, € Z, we search for (one of the)

best(s) polynomial of the form

* a6+a){X++ G’:LXH

T 9mo | 9my oMo,

p

where af € Z that minimizes ||f — p||s.

1/2

1
dz
First step: replace ~ with ||glls = / g(z 2)
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Absolute Error Problem

Given f:[—1,1] = R and my,...,m, € Z, we search for (one of the)
best(s) polynomial of the form

* * *
* aO al = an n
P = T+
9mo oma 2my

where af € Z which minimizes

17 =sl =/ 11<f<x> Oy

1/2
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Absolute Error Problem

Given f:[—1,1] = R and my,...,m, € Z, we search for (one of the)
best(s) polynomial of the form

1 T z"
*x _x * *
P =ag 9mg +a; 9om toeta, 9omn,
Nl ~ —
eo () e1() en(x)

where af € Z which minimizes

1f =Pl = I = Pepo) (D2 + 1P,y (F) = pll2

where p, . (f) : orthogonal projection of f onto IR, [z].

Let Pg, 12 (f) = Z?:() fiei (7)
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best(s) polynomial of the form

1 T z"
*x _x * *
P =ag 9mg +a; 9om + +a, 9omn,
N ~ N
eo () e1() en(z)

where af € Z which minimizes

D=l = ([ a0 -9l 25

where p, . (f) : orthogonal projection of f onto IR, [z].

Let Pg, 12 (f) = Z?:() fiei (7)

1/2
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Absolute Error Problem

We wish to minimize

1Pg o) (F) = 272 = HZ z)|2

where p. (f) =21, fiei(z) and afy, ... a}, € Z.
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Absolute Error Problem

We wish to minimize

1Pz, 10 () = P7ll2 = HZ z)|2

where p. (f) =21, fiei(z) and afy, ... a}, € Z.

Let G = ((€j|€j))0<17j<r”, let M such that G = M'M (Cholesky
decomposition). Actually,

”pnen[m](f) —p*||2 = |Ma* — U|2

where a* = ((l;)()gjgn S Zn+1 and v = (]Wt)il(fj)()gjgn.
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Absolute Error Problem

We wish to minimize

1Pg o) (F) = 272 = HZ z)|2

where p. (f) =21, fiei(z) and afy, ... a}, € Z.

Let G = ((€j|€j))0</g7j<n, let M such that G = M'M (Cholesky
decomposition). Actually,

||p]Rn[.’1:](f) _p*||2 = |Ma* — U|2

where a* = ((l;)()gjgn cZ" ! and v = (]\'ft)il(fj)()gjgn
This is a closest vector problem in a lattice!

It is NP-hard: LLL algorithm gives an approximate solution.
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An Example: Arctan Function on [-1,1]

A question from the numerics group of Intel Portland.

Each approximant is of the form
z+2°(po + p1 2¥+ po 2+ + por 2+ poy )
~— =~ ~— ~— ~—

d. d. d. d. d.

where the p; are all double precision numbers (d.).
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An Example: Arctan Function on [-1,1]

A question from the numerics group of Intel Portland.
Each approximant is of the form
r+23(po + p1 22+ po 2t -+ poy 2P+ poy )
~— =~ ~— ~— ~—
d. d. d. d. d.

where the p; are all double precision numbers (d.).

Here, we minimize the relative error

c+x3(po + p1 @24+ par 2+ poy )
~— ~— ~—
1— d. d. d. d.

f

o0
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where the p; are all double precision numbers (d.).

binary logarithm of the relative error of several approximants

Minimax -65.41
Rounded minimax | -56.59
Our polynomial -65.08
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An Example: Arctan Function on [-1,1]

A question from the numerics group of Intel Portland.

Each approximant is of the form
r+23(po + p1 22+ po 2t -+ poy 2P+ poy )
~— =~ ~— ~— ~—
d. d. d. d. d.

where the p; are all double precision numbers (d.).

binary logarithm of the relative error of several approximants

Minimax -65.41
Rounded minimax | -56.59
Our polynomial -65.08

We save 8 bits with our method.
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Extension

Very nice work by D. Arzelier, F. Bréhard, T. Hubrecht and M. Joldes
who minimize both the approximation and evaluation errors.
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