
Machine-efficient polynomial approximation

Nicolas Brisebarre Sylvain Chevillard Guillaume Hanrot
Tom Hubrecht Serge Torres

SMAI 2025

1 / 23

Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of φ to a given accuracy η.

2 / 23

(Binary) Floating Point (FP) Arithmetic

Given {
a precision p ⩾ 1,
a set of exponents Emin, · · · , Emax.

A finite FP number x is represented by 2 integers:
integer significand M , 2p−1 ⩽ |M | ⩽ 2p − 1,
exponent E, Emin ⩽ E ⩽ Emax

such that
x =

M

2p−1
× 2E .

3 / 23

IEEE Precisions

IEEE 754 standard (1984 then 2008).

See http://en.wikipedia.org/wiki/IEEE_floating_point

precision p min. exponent maximal exponent
Emin Emax

binary32 (single) 24 −126 127
binary64 (double) 53 −1022 1023
extended double 64 −16382 16383
binary128 (quadruple) 113 −16382 16383

We have x = M
2p−1 × 2E with 2p−1 ⩽ |M | ⩽ 2p − 1

and Emin ⩽ E ⩽ Emax.

4 / 23

http://en.wikipedia.org/wiki/IEEE_floating_point

Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of φ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function φ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p⋆, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p⋆||.
Step 4. Computation of a certified evalutation error of p⋆: GAPPA
(G. Melquiond).

5 / 23

Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of φ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function φ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].

Step 2. Computation of p⋆, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p⋆||.
Step 4. Computation of a certified evalutation error of p⋆: GAPPA
(G. Melquiond).

5 / 23

Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of φ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function φ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p⋆, a “machine-efficient” polynomial
approximation of f .

Step 3. Computation of a rigorous approximation error ||f − p⋆||.
Step 4. Computation of a certified evalutation error of p⋆: GAPPA
(G. Melquiond).

5 / 23

Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of φ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function φ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p⋆, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p⋆||.

Step 4. Computation of a certified evalutation error of p⋆: GAPPA
(G. Melquiond).

5 / 23

Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of φ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function φ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p⋆, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p⋆||.
Step 4. Computation of a certified evalutation error of p⋆: GAPPA
(G. Melquiond).

5 / 23

Why Use Polynomial Approximation?

The floating-point operations +,−,×, /,
√ are as accurate as possible

(correct rounding).

The floating-point operations +,−,× are very fast.

We have very fine approximation and evaluation schemes for polynomials.

=⇒ Let’s use polynomials!

6 / 23

Why Use Polynomial Approximation?

The floating-point operations +,−,×, /,
√ are as accurate as possible

(correct rounding).

The floating-point operations +,−,× are very fast.

We have very fine approximation and evaluation schemes for polynomials.

=⇒ Let’s use polynomials!

6 / 23

Why Use Polynomial Approximation?

The floating-point operations +,−,×, /,
√ are as accurate as possible

(correct rounding).

The floating-point operations +,−,× are very fast.

We have very fine approximation and evaluation schemes for polynomials.

=⇒ Let’s use polynomials!

6 / 23

Why Use Polynomial Approximation?

The floating-point operations +,−,×, /,
√ are as accurate as possible

(correct rounding).

The floating-point operations +,−,× are very fast.

We have very fine approximation and evaluation schemes for polynomials.

=⇒ Let’s use polynomials!

6 / 23

Minimax Approximation

Reminder. Let g : [a, b] → R, ||g||∞,[a,b] = supa⩽x⩽b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ⩽ n}.

Minimax approximation: let f : [a, b] → R, n ∈ N, we search for
p ∈ Rn[X] s.t.

||p− f ||∞,[a,b] = inf
q∈Rn[X]

||q − f ||∞,[a,b].

7 / 23

Minimax Approximation

Reminder. Let g : [a, b] → R, ||g||∞,[a,b] = supa⩽x⩽b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ⩽ n}.

Minimax approximation: let f : [a, b] → R, n ∈ N, we search for
p ∈ Rn[X] s.t.

||p− f ||∞,[a,b] = inf
q∈Rn[X]

||q − f ||∞,[a,b].

7 / 23

Minimax Approximation

Degree-3 minimax approximation to cos

Chebyshev’s theorem (1902).

8 / 23

Minimax Approximation

Degree-3 minimax approximation to cos

Chebyshev/Borel’s theorem (1902).

8 / 23

Minimax Approximation

Degree-3 minimax approximation to cos

Chebyshev/Borel/Kirchberger’s theorem (1902).

8 / 23

Minimax Approximation

Reminder. Let g : [a, b] → R, ||g||∞,[a,b] = supa⩽x⩽b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ⩽ n}.

Minimax approximation: let f : [a, b] → R, n ∈ N, we search for
p ∈ Rn[X] s.t.

||p− f ||∞,[a,b] = inf
q∈Rn[X]

||q − f ||∞,[a,b].

An algorithm due to Remez (1934) gives p (minimax function in Maple,
remez function in Sollya http://sollya.gforge.inria.fr/).

Problem: we can’t directly use minimax approx. in a computer since the
coefficients of p can’t be represented on a finite number of bits.

9 / 23

http://sollya.gforge.inria.fr/

Minimax Approximation

Reminder. Let g : [a, b] → R, ||g||∞,[a,b] = supa⩽x⩽b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ⩽ n}.

Minimax approximation: let f : [a, b] → R, n ∈ N, we search for
p ∈ Rn[X] s.t.

||p− f ||∞,[a,b] = inf
q∈Rn[X]

||q − f ||∞,[a,b].

An algorithm due to Remez (1934) gives p (minimax function in Maple,
remez function in Sollya http://sollya.gforge.inria.fr/).

Problem: we can’t directly use minimax approx. in a computer since the
coefficients of p can’t be represented on a finite number of bits.

9 / 23

http://sollya.gforge.inria.fr/

Minimax Approximation

Reminder. Let g : [a, b] → R, ||g||∞,[a,b] = supa⩽x⩽b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ⩽ n}.

Minimax approximation: let f : [a, b] → R, n ∈ N, we search for
p ∈ Rn[X] s.t.

||p− f ||∞,[a,b] = inf
q∈Rn[X]

||q − f ||∞,[a,b].

An algorithm due to Remez (1934) gives p (minimax function in Maple,
remez function in Sollya http://sollya.gforge.inria.fr/).

Problem: we can’t directly use minimax approx. in a computer since the
coefficients of p can’t be represented on a finite number of bits.

9 / 23

http://sollya.gforge.inria.fr/

Machine-efficient Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.

Let m = (mi)0⩽i⩽n a finite sequence of rational integers. Let

Pm
n = {q = q0 + q1x+ · · · + qnx

n ∈ Rn[X]; qi integer multiple of 2−mi ,∀i}.

Question: find p⋆ ∈ Pm
n which minimizes ∥f − q∥∞, q ∈ Pm

n .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded

to âi/2
mi , the nearest integer multiple of 2−mi →

p̂(x) =
â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the
polynomials of Pm

n .

10 / 23

Machine-efficient Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.

Let m = (mi)0⩽i⩽n a finite sequence of rational integers. Let

Pm
n = {q = q0 + q1x+ · · · + qnx

n ∈ Rn[X]; qi integer multiple of 2−mi ,∀i}.

Question: find p⋆ ∈ Pm
n which minimizes ∥f − q∥∞, q ∈ Pm

n .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded

to âi/2
mi , the nearest integer multiple of 2−mi →

p̂(x) =
â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the
polynomials of Pm

n .

10 / 23

Machine-efficient Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.

Let m = (mi)0⩽i⩽n a finite sequence of rational integers. Let

Pm
n = {q = q0 + q1x+ · · · + qnx

n ∈ Rn[X]; qi integer multiple of 2−mi ,∀i}.

Question: find p⋆ ∈ Pm
n which minimizes ∥f − q∥∞, q ∈ Pm

n .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded

to âi/2
mi , the nearest integer multiple of 2−mi →

p̂(x) =
â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the
polynomials of Pm

n .

10 / 23

Machine-efficient Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.

Let m = (mi)0⩽i⩽n a finite sequence of rational integers. Let

Pm
n = {q = q0 + q1x+ · · · + qnx

n ∈ Rn[X]; qi integer multiple of 2−mi ,∀i}.

Question: find p⋆ ∈ Pm
n which minimizes ∥f − q∥∞, q ∈ Pm

n .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded

to âi/2
mi , the nearest integer multiple of 2−mi →

p̂(x) =
â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the
polynomials of Pm

n .

10 / 23

Machine-efficient Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.

Let m = (mi)0⩽i⩽n a finite sequence of rational integers. Let

Pm
n = {q = q0 + q1x+ · · · + qnx

n ∈ Rn[X]; qi integer multiple of 2−mi ,∀i}.

Question: find p⋆ ∈ Pm
n which minimizes ∥f − q∥∞, q ∈ Pm

n .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded

to âi/2
mi , the nearest integer multiple of 2−mi →

p̂(x) =
â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the
polynomials of Pm

n .

10 / 23

Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is ∼ the best approximant to cos. We have
ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0⩽x⩽π/4

∣∣∣cosx−
(a0
212

+
a1
210

x+
a2
26

x2 +
a3
24

x3
)∣∣∣

is minimal.

The naive approach gives the polynomial

p̂ =
212

212
+

5

210
x− 34

26
x2 +

1

24
x3.

We have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....

11 / 23

Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is ∼ the best approximant to cos. We have
ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0⩽x⩽π/4

∣∣∣cosx−
(a0
212

+
a1
210

x+
a2
26

x2 +
a3
24

x3
)∣∣∣

is minimal.

The naive approach gives the polynomial

p̂ =
212

212
+

5

210
x− 34

26
x2 +

1

24
x3.

We have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....
11 / 23

Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ∼ the best
approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....
We look for a0, a1, a2, a3 ∈ Z such that

max
0⩽x⩽π/4

∣∣∣cosx−
(a0
212

+
a1
210

x+
a2
26

x2 +
a3
24

x3
)∣∣∣

is minimal.
The naive approach gives the polynomial p̂ and
ε̂ = || cos−p̂||[0,π/4] = 0.00069397...

But the best “constrained”
approximant:

p⋆ =
4095

212
+

6

210
x− 34

26
x2 +

1

24
x3

which gives || cos−p⋆||[0,π/4] = 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

12 / 23

Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ∼ the best
approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....
We look for a0, a1, a2, a3 ∈ Z such that

max
0⩽x⩽π/4

∣∣∣cosx−
(a0
212

+
a1
210

x+
a2
26

x2 +
a3
24

x3
)∣∣∣

is minimal.
The naive approach gives the polynomial p̂ and
ε̂ = || cos−p̂||[0,π/4] = 0.00069397... But the best “constrained”
approximant:

p⋆ =
4095

212
+

6

210
x− 34

26
x2 +

1

24
x3

which gives || cos−p⋆||[0,π/4] = 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

12 / 23

Back to our Problem

We’re given [a, b], f : [a, b] 7→ R and m = (mi)0⩽i⩽n a finite sequence of
rational integers.
Let

Pm
n = {q = q0 + q1x+ · · · + qnx

n ∈ Rn[X]; qi integer multiple of 2−mi ,∀i}.

Question: find a⋆0, . . . , a
⋆
n ∈ Z s.t.

p⋆ = a⋆0
1

2m0︸︷︷︸
e0(x)

+a⋆1
x

2m1︸︷︷︸
e1(x)

+ · · ·+ a⋆n
xn

2mn︸︷︷︸
en(x)

minimizes ∥f − q∥∞, q ∈ Pm
n .

13 / 23

An Approach via Lattice Basis Reduction

14 / 23

An Approach via Lattice Basis Reduction

Definition
Let L be a nonempty subset of Rd, L is a lattice iff there exists a set of
vectors b1, . . . , bk R-linearly independent such that

L = Z.b1 ⊕ · · · ⊕ Z.bk.

(b1, . . . , bk) is a basis of the lattice L.

Examples. Zd, every subgroup of Zd.

L is equipped with |(yi)1⩽i⩽d|2 = (
∑d

i=1 y
2
i)

1/2 for all (yi)1⩽i⩽d ∈ Rd.

15 / 23

An Approach via Lattice Basis Reduction

Definition
Let L be a nonempty subset of Rd, L is a lattice iff there exists a set of
vectors b1, . . . , bk R-linearly independent such that

L = Z.b1 ⊕ · · · ⊕ Z.bk.

(b1, . . . , bk) is a basis of the lattice L.

Examples. Zd, every subgroup of Zd.

L is equipped with |(yi)1⩽i⩽d|2 = (
∑d

i=1 y
2
i)

1/2 for all (yi)1⩽i⩽d ∈ Rd.

15 / 23

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

16 / 23

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.

17 / 23

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem)

are
NP-hard.

17 / 23

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.

17 / 23

Lenstra-Lenstra-Lovász Algorithm

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.

Factoring Polynomials with Rational Coefficients, A. K. Lenstra, H.
W. Lenstra and L. Lovász, Math. Annalen 261, 515-534, 1982.

The LLL algorithm gives an approximate solution to SVP in polynomial
time.

Babai’s algorithm (based on LLL) gives an approximate solution to CVP
in polynomial time.

18 / 23

Lenstra-Lenstra-Lovász Algorithm

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.

Factoring Polynomials with Rational Coefficients, A. K. Lenstra, H.
W. Lenstra and L. Lovász, Math. Annalen 261, 515-534, 1982.

The LLL algorithm gives an approximate solution to SVP in polynomial
time.

Babai’s algorithm (based on LLL) gives an approximate solution to CVP
in polynomial time.

18 / 23

Absolute Error Problem

Given f : [−1, 1] 7→ R and m0, . . . ,mn ∈ Z, we search for (one of the)
best(s) polynomial of the form

p⋆ =
a⋆0
2m0

+
a⋆1
2m1

X + · · ·+ a⋆n
2mn

Xn

where a⋆i ∈ Z that minimizes ∥f − p∥∞.

First step: replace ∥g∥∞ with ∥g∥2 =

(∫ 1

−1

g(x)2
dx√
1− x2

)1/2

.

19 / 23

Absolute Error Problem

Given f : [−1, 1] 7→ R and m0, . . . ,mn ∈ Z, we search for (one of the)
best(s) polynomial of the form

p⋆ =
a⋆0
2m0

+
a⋆1
2m1

X + · · ·+ a⋆n
2mn

Xn

where a⋆i ∈ Z that minimizes ∥f − p∥∞.

First step: replace ∥g∥∞ with ∥g∥2 =

(∫ 1

−1

g(x)2
dx√
1− x2

)1/2

.

19 / 23

Absolute Error Problem

Given f : [−1, 1] 7→ R and m0, . . . ,mn ∈ Z, we search for (one of the)
best(s) polynomial of the form

p⋆ =
a⋆0
2m0

+
a⋆1
2m1

x+ · · ·+ a⋆n
2mn

xn

where a⋆i ∈ Z which minimizes

∥f − p∥2 =

(∫ 1

−1

(f(x)− p(x))2
dx√
1− x2

)1/2

.

where pRn[x]
(f) : orthogonal projection of f onto Rn[x].

Let pRn[x]
(f) =

∑n
i=0 fiei(x).

20 / 23

Absolute Error Problem

Given f : [−1, 1] 7→ R and m0, . . . ,mn ∈ Z, we search for (one of the)
best(s) polynomial of the form

p⋆ = a⋆0
1

2m0︸︷︷︸
e0(x)

+a⋆1
x

2m1︸︷︷︸
e1(x)

+ · · ·+ a⋆n
xn

2mn︸︷︷︸
en(x)

where a⋆i ∈ Z which minimizes

∥f − p∥2 =

(∫ 1

−1

(f(x)− p(x))2
dx√
1− x2

)1/2

.

where pRn[x]
(f) : orthogonal projection of f onto Rn[x].

Let pRn[x]
(f) =

∑n
i=0 fiei(x).

20 / 23

Absolute Error Problem

Given f : [−1, 1] 7→ R and m0, . . . ,mn ∈ Z, we search for (one of the)
best(s) polynomial of the form

p⋆ = a⋆0
1

2m0︸︷︷︸
e0(x)

+a⋆1
x

2m1︸︷︷︸
e1(x)

+ · · ·+ a⋆n
xn

2mn︸︷︷︸
en(x)

where a⋆i ∈ Z which minimizes

∥f − p∥2 = ∥f − pRn[x]
(f)∥2 + ∥pRn[x]

(f)− p∥2

where pRn[x]
(f) : orthogonal projection of f onto Rn[x].

Let pRn[x]
(f) =

∑n
i=0 fiei(x).

20 / 23

Absolute Error Problem

Given f : [−1, 1] 7→ R and m0, . . . ,mn ∈ Z, we search for (one of the)
best(s) polynomial of the form

p⋆ = a⋆0
1

2m0︸︷︷︸
e0(x)

+a⋆1
x

2m1︸︷︷︸
e1(x)

+ · · ·+ a⋆n
xn

2mn︸︷︷︸
en(x)

where a⋆i ∈ Z which minimizes

∥pRn[x]
(f)− p∥2 =

(∫ 1

−1

(pRn[x]
(f)− p(x))2

dx√
1− x2

)1/2

.

where pRn[x]
(f) : orthogonal projection of f onto Rn[x].

Let pRn[x]
(f) =

∑n
i=0 fiei(x).

20 / 23

Absolute Error Problem

We wish to minimize

∥pRn[x]
(f)− p⋆∥2 = ∥

n∑
i=0

(fi − a⋆i)ei(x)∥2

where pRn[x]
(f) =

∑n
i=0 fiei(x) and a⋆0, . . . , a

⋆
n ∈ Z.

Let G = ((ei|ej))0⩽i,j⩽n, let M such that G = M tM (Cholesky
decomposition). Actually,

∥pRn[x]
(f)− p⋆∥2 = |Ma⋆ − v|2

where a⋆ = (a⋆j)0⩽j⩽n ∈ Zn+1 and v = (M t)−1(fj)0⩽j⩽n.

This is a closest vector problem in a lattice!

It is NP-hard: LLL algorithm gives an approximate solution.

21 / 23

Absolute Error Problem

We wish to minimize

∥pRn[x]
(f)− p⋆∥2 = ∥

n∑
i=0

(fi − a⋆i)ei(x)∥2

where pRn[x]
(f) =

∑n
i=0 fiei(x) and a⋆0, . . . , a

⋆
n ∈ Z.

Let G = ((ei|ej))0⩽i,j⩽n, let M such that G = M tM (Cholesky
decomposition). Actually,

∥pRn[x]
(f)− p⋆∥2 = |Ma⋆ − v|2

where a⋆ = (a⋆j)0⩽j⩽n ∈ Zn+1 and v = (M t)−1(fj)0⩽j⩽n.

This is a closest vector problem in a lattice!

It is NP-hard: LLL algorithm gives an approximate solution.

21 / 23

Absolute Error Problem

We wish to minimize

∥pRn[x]
(f)− p⋆∥2 = ∥

n∑
i=0

(fi − a⋆i)ei(x)∥2

where pRn[x]
(f) =

∑n
i=0 fiei(x) and a⋆0, . . . , a

⋆
n ∈ Z.

Let G = ((ei|ej))0⩽i,j⩽n, let M such that G = M tM (Cholesky
decomposition). Actually,

∥pRn[x]
(f)− p⋆∥2 = |Ma⋆ − v|2

where a⋆ = (a⋆j)0⩽j⩽n ∈ Zn+1 and v = (M t)−1(fj)0⩽j⩽n.

This is a closest vector problem in a lattice!

It is NP-hard: LLL algorithm gives an approximate solution.

21 / 23

An Example: Arctan Function on [-1,1]

A question from the numerics group of Intel Portland.

Each approximant is of the form

x+ x3(p0︸︷︷︸
d.

+ p1︸︷︷︸
d.

x2 + p2︸︷︷︸
d.

x4 + · · ·+ p21︸︷︷︸
d.

x42 + p22︸︷︷︸
d.

x44)

where the pi are all double precision numbers (d.).

We save 8 bits with our method.

22 / 23

An Example: Arctan Function on [-1,1]

A question from the numerics group of Intel Portland.

Each approximant is of the form

x+ x3(p0︸︷︷︸
d.

+ p1︸︷︷︸
d.

x2 + p2︸︷︷︸
d.

x4 + · · ·+ p21︸︷︷︸
d.

x42 + p22︸︷︷︸
d.

x44)

where the pi are all double precision numbers (d.).

Here, we minimize the relative error∥∥∥∥∥∥∥∥1−
x+ x3(p0︸︷︷︸

d.

+ p1︸︷︷︸
d.

x2 + · · ·+ p21︸︷︷︸
d.

x42 + p22︸︷︷︸
d.

x44)

f

∥∥∥∥∥∥∥∥
∞

We save 8 bits with our method.

22 / 23

An Example: Arctan Function on [-1,1]

A question from the numerics group of Intel Portland.

Each approximant is of the form

x+ x3(p0︸︷︷︸
d.

+ p1︸︷︷︸
d.

x2 + p2︸︷︷︸
d.

x4 + · · ·+ p21︸︷︷︸
d.

x42 + p22︸︷︷︸
d.

x44)

where the pi are all double precision numbers (d.).

binary logarithm of the relative error of several approximants

Minimax -65.41
Rounded minimax -56.59
Our polynomial -65.08

We save 8 bits with our method.

22 / 23

An Example: Arctan Function on [-1,1]

A question from the numerics group of Intel Portland.

Each approximant is of the form

x+ x3(p0︸︷︷︸
d.

+ p1︸︷︷︸
d.

x2 + p2︸︷︷︸
d.

x4 + · · ·+ p21︸︷︷︸
d.

x42 + p22︸︷︷︸
d.

x44)

where the pi are all double precision numbers (d.).

binary logarithm of the relative error of several approximants

Minimax -65.41
Rounded minimax -56.59
Our polynomial -65.08

We save 8 bits with our method.

22 / 23

Extension

Very nice work by D. Arzelier, F. Bréhard, T. Hubrecht and M. Joldes
who minimize both the approximation and evaluation errors.

23 / 23

