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Topic: the space GBD

Was Introduced by G. Dal Maso to tackle the minimization of Griffith’s energy :

min
(u,K)

∫
Ω\K

Ce(u) : e(u)dx +Hd−1(K ) =: E(u,K )

subject to u = U0 on ∂DΩ \ K , where K ⊂ Ω is a crack set (of co-dimension 1),
u : Ω → Rd is an infinitesimal displacement, and e(u) = (Du + DuT )/2 is the
symmetrized gradient. (C is the “Hooke’s law”, typically Ce(u) = λ(Tre(u))I + 2µe(u)
for an isotropic linear elastic material).
[Problem introduced in the late 90’s by Francfort and Marigo to model crack growth in
linearized elasticity.]

Difficulty: Energy space for E(u,K )?



Minimizing sequences
If (un,Kn) is a minimizing sequence for E , Kn → K in the Hausdorff sense (up to a
subsequence), un → u in H1

loc(Ω \ K ) and (easy)∫
Ω\K

Ce(u) : e(u)dx ≤ lim inf
n

∫
Ω\Kn

Ce(un) : e(un)dx .

Yet, with this approach, very hard (and not true in general) to show:

Hd−1(K ) ≤ lim inf
n

Hd−1(Kn).

▶ True if Kn, K are assumed connected, in 2D;
▶ For the “Mumford-Shah functional” which is the scalar variant: 2D by

Dal Maso-Morel-Solimini (early 90’s) [first bound the number of components then send it to +∞];
▶ Still Mumford-Shah, any dimension: modify Kn by removing low density pieces:

Maddalena-Solimini (early 2000’s).



Weak formulation

Alternatively, one introduces a “weak formulation”:

E(u) =
∫
Ω
Ce(u) : e(u)dx +Hd−1(Ju)

where Ju is the jump set of u, that is the set of points

Ju =

{
x ∈ Ω : u(x + ry)

L1(B1)−→ u+(x)χ{y ·νu(x)≥0} + u−(x)χ{y ·νu(x)<0}

}
which is a rectifiable (d − 1)-dimensional set (Del Nin, 2021)
Issue: for which functions can we define Ju (and e(u) out of Ju)?



BV , SBV , GSBV , BD, SBD...

In the scalar setting, the relevant space is BV , the space of functions with bounded
variations, whose gradient Du is a bounded Radon measure. One can show that
Hd−1-a.e. point is either a jump point (Ju) or a Lebesgue point, and Du is decomposed
as

Du = ∇u(x)dx + Cu + (u+ − u−)⊗ νuHd−1|Ju
with Cu the “Cantor part” which is “in between” dimensions d and d − 1. Then, “SBV ”
are the functions for which Cu = 0, and the Mumford-Shah energy is coercive and
lsc. in SBV (Ambrosio’s compactness theorem) provided the minimizing sequence is
uniformly bounded.

Reason: Hd−1(Ju) does not control, in general,
∫
Ju
|u+ − u−|dHd−1 which is the

mass of the jump part of the differential → “GBV ”, “GSBV ” defined by truncation.



BV , SBV , GSBV , BD, SBD...

In the vectorial linearized elasticity setting, BV has to be replaced with “BD” the set of
displacements u : Ω → Rd such that the symmetrized gradient Eu = (Du + DuT )/2 is
a Radon measure. Then, one has:

Eu = e(u)(x)dx + Cu + (u+ − u−)⊙ νuHd−1|Ju

where a⊙ b = (a⊗ b + b ⊗ a)/2 is the symmetrized tensor product of two vectors.

Again: “SBD” if Cu = 0, is enough to minimize the weak Griffith energy with an
additional constraint ∥u∥∞ ≤ C .

But in general? No a priori L∞ bound. No easy strategy as in the scalar case (truncate,
show maximum principle...)



G (S)BD?

No “working” definition until Dal Maso’s suggestion around 2010. Idea of Dal Maso:
use 1D “slices”.



1D Slicing of BV or BD functions

Indeed, u ∈ BV if and only if for all ξ ∈ Sd−1 and almost all z ∈ ξ⊥,

uξ,z : s 7→ u(z + sξ) is BV , and

|Du| ≈ max
ξ

∫
ξ⊥

|Duξ,z |(R)dHd−1(z) < +∞.

But, in fact, one has ∫
ξ⊥

|Duξ,z |(R)dHd−1(z) = |ξ · Du|

and it is enough to control this for a basis ξ ∈ {ei : i = 1, . . . , d} to obtain that
u ∈ BV .



1D Slicing of BV or BD functions

In the same way:, u ∈ BD if and only if for all ξ ∈ Sd−1 and almost all z ∈ ξ⊥,

uξ,z : s 7→ ξ · u(z + sξ) is BV , and

|Eu| ≈ max
ξ

∫
ξ⊥

|Duξ,z |(R)dHd−1(z) < +∞.

But, in fact, one has ∫
ξ⊥

|Duξ,z |(R)dHd−1(z) = |ξ · (Eu · ξ)|

and it is enough to control this for a basis ξ ∈ {ei : i = 1, . . . , d} and the directions
{ei + ej : 1 ≤ i < j ≤ d} to obtain that u ∈ BD.



1D slicing of BV or BD functions

We recall indeed that [for u smooth]

d

ds
(u(z + sξ)) = ⟨Du(z + sξ), ξ⟩

is controlled by
∫
|∇u|dx (on average), but not (if u vectorial) by

∫
|e(u)|dx , while

d

ds
(ξ · u(z + sξ)) = ⟨tξDu(z + sξ), ξ⟩ = ⟨tξe(u)(z + sξ), ξ⟩

is a symmetric expression of Du and controlled (on average) by
∫
|e(u)|dx



Dal Maso’s definition [JEMS, 2011]
Definition u : Ω → Rd (measurable) is in GBD if and only if for all (or a.e.) ξ ∈ Sd−1

and a.e. z ∈ ξ⊥,
▶ uξ,z : s 7→ ξ · u(z + sξ) is BV ,

▶ Mξ :=
∫
ξ⊥ dz

(∫
R\Juξ,z

|Duξ,z |+
∑

s∈Juξ,z
|u+ξ,z(s)− u−ξ,z(s)| ∧ 1

)
< +∞,

and
sup

ξ∈Sd−1
Mξ < +∞.

▶ DM shows that such u has a (d − 1)-rectifiable jump set Ju and an approximate
symmetrized gradient e(u) ∈ L1(Ω) a.e.,

▶ Then, compactness and lower semicontinuity for minimizing sequences for E(u)
(AC+Crismale);

▶ Then, weak minimizers are strong (K = Ju, Conti-Focardi-Iurlano in 2D, AC-Conti-Iurlano
in higher dimension, AC-Crismale with Dirichlet B.C.).



A simpler characterization

In DM’s paper, one really needs that Mξ is bounded for all ξ (or a dense set, but it is
shown that ξ 7→ Mξ is lsc).

Yet in a recent paper of Almi, Davoli, Kubin, Tasso (arXiv:2410.23908), a variant of
GBD is introduced as the domain of the limit of non-local functionals (in the spirit of
Bourgain-Brézis-Mironescu), where it is assumed that only∫

Sd−1
Mξ < +∞,

and they raise the question: is this GBD?



A simpler characterization

A more natural question is: assume we know that for some basis {ei : i = 1, . . . , d},

max
1≤i≤d

Mei , max
1≤i<j≤d

Mei+ej < +∞

then is u in GBD?

The characterization of Almi et al. obviously implies that for a.e. orthogonal bases, this
will hold. Hence if this characterizes GBD, then their variant is also GBD.



A simpler characterization

Theorem [C.-Crismale, 2025] Assume that there exists a basis {ei : i = 1, . . . , d} such
that

max
1≤i≤d

Mei , max
1≤i<j≤d

Mei+ej < +∞

then u ∈ GBD.

(wlog, orthonormal basis)



Idea of proof

The proof is relatively simple: since the only tool we can rely on here is slicing, so
nothing very fancy. We fix ε > 0 and show, for
V = {ei : i = 1, . . . , d} ∪ {ei + ej : 1 ≤ i < j ≤ d}, and Q = (0, 1)d ,

εd−1
∫
Q

∑
ξ∈V

∑
i∈εZd

(
|ξ · (u(εy + i + εξ)− u(εy + i))| ∧ 1

)
dy ≤ C

∑
ξ∈V

Mξ



Idea of proof

Indeed, given ξ,

εd−1
∫
Q

∑
i∈εZd

(
|ξ · (u(εy + i︸ ︷︷ ︸

x

+εξ)− u(εy + i))| ∧ 1
)
dy

= ε−1
∫
Ω∩(Ω−εξ)

(
|ξ · (u(x + εξ)− u(x))| ∧ 1

)
dx ,

= ε−1
∫
ξ⊥

∫
Ωξ,z∩(Ωξ,z−ε)

(
|uξ,z(s + ε)− uξ,z(s)| ∧ 1

)
|ξ|ds dHd−1(z).

If we let µξ,z(I ) = |Duξ,z |(I \ Juξ,z ) +
∑

s∈I∩Juξ,z
|u+ξ,z(s)− u−ξ,z(s)| ∧ 1, we show that

|uξ,z(s + ε)− uξ,z(s)| ∧ 1 ≤ µξ,z(s, s + ε)

for a.e. s.



Idea of proof

And then [using Fubini],∫
Ωξ,z∩(Ωξ,z−ε)

|uξ,z(s+ε)− uξ,z(s)| ∧ 1ds ≤
∫
Ωξ,z∩(Ωξ,z−ε)

µξ,z(s, s + ε)ds

≤
∫
Ωξ,z∩(Ωξ,z−ε)

χ{s≤t≤s+ε}dµξ,z(t)ds

=

∫
Ωξ,z∩(Ωξ,z−ε)

χ{t−ε≤s≤t}ds dµξ,z(t) ≤ εµξ,z(Ωξ,z).

Hence:

ε−1
∫
ξ⊥

∫
Ωξ,z∩(Ωξ,z−ε)

|uξ,z(s + ε)− uξ,z(s)| ∧ 1ds ≤ ε−1
∫
ξ⊥

εµξ,z(Ωξ,z) ≤ Mξ



Idea of proof

We have proved our claim:

εd−1
∫
Q

∑
ξ∈V

∑
i∈εZd

(
|ξ · (u(εy + i + εξ)− u(εy + i))| ∧ 1

)
dy ≤ C

∑
ξ∈V

Mξ

so that for many y ∈ Q,

εd−1
∑
ξ∈V

∑
i∈εZd

(
|ξ · (u(εy + i + εξ)− u(εy + i))| ∧ 1

)
≤ 2C

∑
ξ∈V

Mξ

and it turns out that one can select such y ε such that for a.e. x ,

lim
ε→0

∑
i∈Zd

u(εy ε + i)
d∏

j=1

(
1 − |xj−ij |

ε

)+
= u(x).



Idea of proof

We then define an approximating sequence uε as
▶ the multilinear interpolation of the values u(εy ε + i) (defined in the previous slide)

in the cubes such that

|ξ · (u(εy ε + j + εξ)− u(εy ε + j))| ≤ 1

for all ξ ∈ V and all pair of vertices (j , j + εξ) of the cube;
▶ 0, else.

Then the construction guarantees that uε ∈ SBD(Ω) and Hd−1(Juε) ≤ C
∑

ξ∈V Mξ, in
addition uε → u (in measure or almost everywhere). What about

∫
Ω |e(uε)|dx?



The control of the linear interpolates
Lemma Consider the unit cube Q = [0, 1]d ⊂ Rd . Let v ∈ (Rd){0,1}

d
be given at all

vertices of Q such that vi (x + ei ) = vi (x) for any x ∈ {0, 1}d with xi = 0 and
vi (x + ei + ej) + vj(x + ei + ej) = vi (x) + vj(x) for any x ∈ {0, 1}d with xi = xj = 0.

For x ∈ Q, we also denote by v(x) the multilinear interpolation of the values v at the
vertices (affine on each [x , x + ei ] for any x ∈ Q with xi = 0). Then e(v) = 0 in Q (so
that, in fact, v is affine with skew-symmetric gradient).

Corollary: there exists C > 0 such that∫
Q
|e(v)|dx ≤ C

(
d∑

i=1

∑
x∈{0,1}d

xi=0

|vi (x + ei )− vi (x)|

+
d∑

i ,j=1

∑
x∈{0,1}d
xi=xj=0

|vi (x + ei + ej) + vj(x + ei + ej)− vi (x)− vj(x)|

)



Conclusion

We end up with uε → u such that uε ∈ SBV and∫
Ω
|e(uε)|+Hd−1(Juε) ≤ C

∑
ξ∈V

Mξ < +∞

→ (compactness and) lower-semicontinuity ensures the limit is GBD. (AC+Crismale,
2023/25.) 2


