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Topic: the space GBD

Was Introduced by G. Dal Maso to tackle the minimization of Griffith's energy:

min Ce(u) : e(u)dx + HI7H(K) =: E(u, K)
(u.K) Ja\k

subject to u = U% on 9PQ\ K, where K C Q is a crack set (of co-dimension 1),

u: Q — R% is an infinitesimal displacement, and e(u) = (Du + Du™)/2 is the
symmetrized gradient. (C is the “Hooke's law", typically Ce(u) = A(Tre(u))! + 2pe(u)
for an isotropic linear elastic material).

[Problem introduced in the late 90's by Francfort and Marigo to model crack growth in
linearized elasticity.]

Difficulty: Energy space for £(u, K)?



Minimizing sequences
If (un, Kn) is @ minimizing sequence for £, K, — K in the Hausdorff sense (up to a

subsequence), u, — uin H: (Q\ K) and (easy)

loc
Ce(u) : e(u)dx < liminf Ce(up) : e(un)dx.
Q\K n Q\Ki

Yet, with this approach, very hard (and not true in general) to show:

HITHK) < Iimninf’Hd’l(Kn).

> True if K,, K are assumed connected, in 2D:

» For the “Mumford-Shah functional” which is the scalar variant: 2D by
Dal MaSO—More|—SO|ImInI (early 90’5) [first bound the number of components then send it to +oo];

» Still Mumford-Shah, any dimension: modify K, by removing low density pieces:
Maddalena-Solimini (early 2000's).



Weak formulation

Alternatively, one introduces a “weak formulation”:
/ Ce(u) : e(u)dx +HI ()

where J, is the jump set of u, that is the set of points

LY(B _
Jy = {X € Q:u(x+ry) &) ut (X)X {y (x>0 + U (X)X{y-l/u(x)<0}}

which is a rectifiable (d — 1)-dimensional set (Del Nin, 2021)
Issue: for which functions can we define J, (and e(u) out of J,)?



BV, SBV, GSBV, BD, SBD...

In the scalar setting, the relevant space is BV, the space of functions with bounded
variations, whose gradient Du is a bounded Radon measure. One can show that
H91-a.e. point is either a jump point (J,) or a Lebesgue point, and Du is decomposed
as

Du = Vu(x)dx + Cu+ (ut —u™) @ v,HI Y,

with Cu the “Cantor part” which is “in between” dimensions d and d — 1. Then, “SBV"
are the functions for which Cu = 0, and the Mumford-Shah energy is coercive and

Isc. in SBV (Ambrosio’s compactness theorem) provided the minimizing sequence is
uniformly bounded.

Reason: #971(J,) does not control, in general I |[dH9~ which is the

mass of the jump part of the differential — “GBV", “GSBV" defined by truncation.



BV, SBV, GSBV, BD, SBD...

In the vectorial linearized elasticity setting, BV has to be replaced with “BD" the set of
displacements v : Q — RY such that the symmetrized gradient Eu = (Du+ Du’)/2 is
a Radon measure. Then, one has:

Eu = e(u)(x)dx + Cu+ (vt —u™) O v,H Y,

where a® b= (a® b+ b® a)/2 is the symmetrized tensor product of two vectors.

Again: “SBD" if Cu =0, is enough to minimize the weak Griffith energy with an
additional constraint [|u||. < C.

But in general? No a priori L bound. No easy strategy as in the scalar case (truncate,
show maximum principle...)



G(S)BD?

No “working” definition until Dal Maso's suggestion around 2010. Idea of Dal Maso:
use 1D “slices".



1D Slicing of BV or BD functions

Indeed, u € BV if and only if for all £ € S9~! and almost all z € ¢+,
Uz 1 s+ u(z+s§)is BV, and

|Du| ~ mgx/ |Dug ,|(R)dHI 7 (2) < 4o0.
gi

But, in fact, one has
/ |Dug -|(R)dHT(2) = |¢ - Du
gL

and it is enough to control this for a basis £ € {¢; : i = 1,...,d} to obtain that
uec BV.



1D Slicing of BV or BD functions

In the same way:, u € BD if and only if for all ¢ € S~! and almost all z € ¢+,
ue, s &-u(z+s€)is BV, and

|Eu| ~ mgax/ |Dug ,|(R)dH 7 (2) < +oc.
gL
But, in fact, one has

L 1Pl ®)ae ) = e (Eu-€)

and it is enough to control this for a basis £ € {¢; : i = 1,...,d} and the directions
{ei+e:1<i<j<d} toobtain that u € BD.



1D slicing of BV or BD functions

We recall indeed that [for u smooth]

%(u(z +5€)) = (Du(z + 5¢), &)

is controlled by [ |Vu|dx (on average), but not (if u vectorial) by [ |e(u)|dx, while

e ulz +56) = (f€Du(z + 6), &) = (‘Ce(u)(z + ). )

is a symmetric expression of Du and controlled (on average) by [ |e(u)|dx



Dal Maso's definition [JEMS, 2011]

Definition v : Q — RY (measurable) is in GBD if and only if for all (or a.e.) ¢ € S9!
and ae. z € &4,

> ue, s & u(z+sE)is BV,

> M= .. oz ( S |Ducal + Sy, |02.(5) = ug ()| A 1) < +oo,

and

sup Mg < +o00.
gegd—l

» DM shows that such u has a (d — 1)-rectifiable jump set J, and an approximate
symmetrized gradient e(u) € L}(Q) a.e.,

» Then, compactness and lower semicontinuity for minimizing sequences for £(u)
(AC+Crismale);

» Then, weak minimizers are strong (K = J,,, Conti-Focardi-lurlano in 2D, AC-Conti-lurlano
in higher dimension, AC-Crismale with Dirichlet B.C.).



A simpler characterization

In DM’s paper, one really needs that M, is bounded for all £ (or a dense set, but it is
shown that { — M is Isc).

Yet in a recent paper of Almi, Davoli, Kubin, Tasso (arXiv:2410.23908), a variant of
GBD is introduced as the domain of the limit of non-local functionals (in the spirit of
Bourgain-Brézis-Mironescu), where it is assumed that only

M < +o0,

gd—1

and they raise the question: is this GBD?



A simpler characterization

A more natural question is: assume we know that for some basis {¢; : i =1,...,d},

max M.,

max M, max Me.+ej<+oo
_’_

T1<i<j<d
then is v in GBD?

The characterization of Almi et al. obviously implies that for a.e. orthogonal bases, this
will hold. Hence if this characterizes GBD, then their variant is also GBD.



A simpler characterization

Theorem [C.-Crismale, 2025] Assume that there exists a basis {e; : i = 1,...,d} such

that

max Mg, , max Me,+e < 400
1<i<d T1<i<j< J

then v € GBD.

(wlog, orthonormal basis)



|dea of proof

The proof is relatively simple: since the only tool we can rely on here is slicing, so
nothing very fancy. We fix £ > 0 and show, for
V={e:i=1,...,d}U{ei+e:1<i<j<d} and Q=(0,1),

Edl/az Y (€ (uley +i+e€) —uley + D)) Al)dy < CY M

EeVicezd I3%



|dea of proof

Indeed, given &,

sdl/ Z (1€ - (u(ey + i+e€) — u(ey + 1)) A1)dy

iceZd M

_ -1 . « B . y
=€ /Qm(Q—gg) (‘6 (U( + 65) u( ))| A 1)0’
- N d=1(2).
—c /8 /Q&Zm 0 1) (Jug (s +€) — g o(s)| A1) |¢|ds dHTT(2)

If we let pe (1) = [Dug 2| (I'\ Ju,) + Zselmué’z |qu2(5) — ug ,(s)| A1, we show that

|Ug2(s+e) = ugz(S)| AL < pig (s, s +¢)

for a.e. s.



|dea of proof
And then [using Fubini],

/ \ug (s+€) — ug 2(s)| A 1ds < / pe.z(s,s +¢€)ds
Q¢ 2N(Q,z—2) Qe .N(Qe z—¢)

< / X{s<t<s+e} dpe 2(t)ds
Q¢ 2N(Qe,2—¢)

= / X{t—c<s<t}ds dpe 2 (t) < epie 2(Qe. 7).
QE,ZQ(QE,Z*E)

Hence:

81/ / |ug 2(s +€) — ug 2(s)| A Lds < 51/ epe,z(Qe,2) < Mg
- JQe N(Qe € et



|dea of proof

We have proved our claim:
dl/zz € - (uey+1+€§)—u(€y+/))\/\1dy<CZM§
Q¢eV jeezd gev

so that for many y € Q,

ST S (I (uley + i+ 2€) — u(ey + ) AT) S2C Y M

£eVicezd eV

and it turns out that one can select such y© such that for a.e. x,

EITZ (ey® +1) ﬁ(l g~ 'f|> = u(x).

iezd



|dea of proof

We then define an approximating sequence u® as

» the multilinear interpolation of the values u(ey® + i) (defined in the previous slide)
in the cubes such that

1€ (u(ey® +j+¢e&) —u(ey® +)))| <1

for all £ € V and all pair of vertices (j,; + ££) of the cube;
> 0, else.

Then the construction guarantees that u® € SBD(Q) and HI71(J,e) < CZ{GV Mg, in
addition u® — u (in measure or almost everywhere). What about [, |e(u®)|dx?



The control of the linear interpolates

Lemma Consider the unit cube Q = [0,1]¢ C RY. Let v € (R?){%1} be given at all
vertices of Q such that v;(x + €;) = v;(x) for any x € {0,1}9 with x; = 0 and

Vi(x + e + &) + vi(x + & + &) = vi(x) + vj(x) for any x € {0,1}9 with x; = x; = 0.
For x € Q, we also denote by v(x) the multilinear interpolation of the values v at the
vertices (affine on each [x, x + ] for any x € Q with x; = 0). Then e(v) =0 in Q (so
that, in fact, v is affine with skew-symmetric gradient).

Corollary: there exists C > 0 such that

d
/Q|e(v>|dxs c(Z S vilx+ &) — ()]

i=1 xe{0,1}¢

d N7
+ Z Z |vi(x + e + ej) + vJ-(X + e + ej) —vi(x) - VJ(X)|>

ij=1xe{0,1}9
X,‘:XJ‘ZO



Conclusion

We end up with v® — u such that u® € SBV and
/| N+HITJe) < CY Mg < +o0
Eev

— (compactness and) lower-semicontinuity ensures the limit is GBD. (AC+Crismale,
2023/25.) O



