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Digital twins for health: context and challenges

Figure 1: Digital Twins as envisioned for healthcarea.

aKatsoulakis, E. et al. npj Digit. Med. (2024)

Definition of digital twins in
precision medicine2

A digital twin is an in-silico
framework that replicates a
biological cell, sub-system, organ,
or a whole organism, with a
transparent predictive model of
their relevant causal mechanisms
and response to interventions.

bDe Domenico et al. npj Digital
Medicine. (2025)
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Figure 2: Methodology for the development of patient-specific models, adapted from1.

1Sala et al. International Journal for Numerical Methods in Biomedical Engineering. (2023)
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Aim: build a digital twin of the eye
▶ State-of-the-art: digital modelsa of

the eye.
▶ Toward a digital shadow: data

from previous studies and
measurements to validate and
enhance the models.

▶ Final goal: a digital twin = virtual
replica of the eye, in real-time
connection with the physical entity.

aScott (1988), Ng et al. (2007), Dvoriashyna
et al. (2019)...

bSala et al. Int J Numer Methods Biomed
Eng. (2023)
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Motivation: understand ocular physiology and pathology
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▶ The eye is a complex organ, with a
multilayered structure, numerous
multiscale and multiphysics phenomena
involved.

▶ Measurements: complex to perform on
human subjectsa, scarce data, mostly
available on surfaceb.

 Present work: focus on heat transfer
and aqueous humor flow dynamics.

aRosenbluth & Fatt. Exp. Eye Res. (1977)
bPurslow & Wolffsohn. Eye Contact Lens. (2005)

Thomas Saigre Towards digital twins for ocular applications SMAI 2025 – 3rd June 2024 5 / 21



Introduction Biophysical model Computational framework Incorporate uncertainties Conclusion References
Digital twin Methodology Motivation

Motivation: understand ocular physiology and pathology
▶ The anterior chamber (AC) is filled

with aqueous humor (AH), whose
dynamics is crucial for the ocular
healtha,

▶ understand the AH flow dynamics
and heat transfer is important for
drug distributionb, and therapeutic
interventions (laser treatment, corneal
cell sedimentationc, etc.).

aDvoriashyna et al. Ocular Fluid Dynamics.
(2019)

bBhandari. J Control Release. (2021)
cKinoshita et al. N Engl J Med. (2018)
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Figure 3: Production and drainage of AH in the
eye.
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Biophysical model23

▶ Incompressible fluid, constant density,
▶ The steady flow of the aqueous humor is governed by the

Navier–Stokes equations:

ρ(u · ∇)u − ∇ · (2µD(u) − pI) = −ρβ(T − Tref)g in ΩAH,

Incompressibility ∇ · u = 0 in ΩAH,

Heat transfer equation ρCpu · ∇T − ki∇2T = 0 in Ω =
⋃
i

Ωi .

+ Boundary and Interface conditions.

Boussinesq approximationNavier-Stokes equations

Anterior
chamber

Posterior
chamberΓC

ΓL

ΓI

ΓVH

ΓSc

ΩAH

2Scott. Physics in Medicine and Biology. (1988), Ng & Ooi. Comput Methods Programs Biomed. (2006), Li et al. Int J Numer Method Biomed
Eng. (2010)...

3Wang et al. BioMedical Engineering OnLine. (2016), Dvoriashyna et al. Mathematical Models of Aqueous Production, Flow and Drainage.
(2019)...
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Parameter dependent model

Symbol Name Dimension Baseline value Range

Tamb Ambient temperature [K] 298 [283.15, 303.15]
Tbl Blood temperature [K] 310 [308.3, 312]

hamb Ambient air convection coefficient [W m−2 K−1] 10a [8, 100]
hbl Blood convection coefficient [W m−2 K−1] 65b [50, 110]
hr Radiation heat transfer coefficient [W m−2 K−1] 6c –
E Evaporation rate [W m−2] 40c [20, 320]

klens Lens conductivity [W m−1 K−1] 0.4b [0.21, 0.544]
kcornea Cornea conductivity [W m−1 K−1] 0.58d –

ksclera = kiris =
klamina = kopticNerve

Eye envelope
components conductivity [W m−1 K−1] 1.0042e –

kaqueousHumor Aqueous humor conductivity [W m−1 K−1] 0.28d –
kvitreousHumor Vitreous humor conductivity [W m−1 K−1] 0.603c –

kchoroid = kretina Vascular beds conductivity [W m−1 K−1] 0.52f –

a Mapstone (1968), b J J W Lagendijk (1982), c Scott (1988), d Emery et al. (1975), e Ng et al. (2007),
f IT’IS Foundation (2024).
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Methods and computational framework

Geometrical
model

Mesh generation

▶ 3D mesh with
4.97 · 106 elements,

▶ Fine mesh
refinement in ΩAH,
where the coupled
model is considered.

Biophysical model

ρ(u · ∇)u − ∇(2µD(u) − pI) = −ρβ(T − Tref)g ,

∇ · u = 0,

ρCpu · ∇T − k∇2T = 0.

Finite element solver
▶ Use the Feel++1 heatfluid

toolbox using monolithic
approach and PDE based
preconditioning for solving
the non-linear problem,

Ë Model validation and
verification.

1C. Prud’homme, et al. Feel++ Release V111. (2024) �� github.com/feelpp/feelppgithub.com/feelpp/feelpp
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Discrete geometry: full pipeline and dataset available in GitHub 1

▶ Performed with Salome meshing library,
using NETGEN2 meshing algorithm.

▶ The mesh generated by Salome is quite
coarse −→ refinement performed
around the AC and PC.

▶ For the verification step: a family of
meshes of various refinement levels is
generated.

Figure 4: Geometry of the eye.

1V. Chabannes, C. Prud’homme, T. Saigre, L. Sala, M. Szopos, C. Trophime A 3D geometrical
model and meshing procedures for the human eyeball, Zenodo �� github.com/feelpp/mesh.eyegithub.com/feelpp/mesh.eye . (2024)

2J. Schöberl. Computing and Visualization in Science. (1997)
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Discrete geometry: full pipeline and dataset available in GitHub 1

▶ Performed with Salome meshing library,
using NETGEN2 meshing algorithm.

▶ The mesh generated by Salome is quite
coarse −→ refinement performed
around the AC and PC.

▶ For the verification step: a family of
meshes of various refinement levels is
generated.

Figure 4: Original mesh, 4.64 · 105 tetrahedrons.

1V. Chabannes, C. Prud’homme, T. Saigre, L. Sala, M. Szopos, C. Trophime A 3D geometrical
model and meshing procedures for the human eyeball, Zenodo �� github.com/feelpp/mesh.eyegithub.com/feelpp/mesh.eye . (2024)

2J. Schöberl. Computing and Visualization in Science. (1997)
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Discrete geometry: full pipeline and dataset available in GitHub 1

▶ Performed with Salome meshing library,
using NETGEN2 meshing algorithm.

▶ The mesh generated by Salome is quite
coarse −→ refinement performed
around the AC and PC.

▶ For the verification step: a family of
meshes of various refinement levels is
generated. Figure 4: Mesh refined around AC and PC,

9.4 · 105 elements.

1V. Chabannes, C. Prud’homme, T. Saigre, L. Sala, M. Szopos, C. Trophime A 3D geometrical
model and meshing procedures for the human eyeball, Zenodo �� github.com/feelpp/mesh.eyegithub.com/feelpp/mesh.eye . (2024)

2J. Schöberl. Computing and Visualization in Science. (1997)
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High Fidelity model
µ̄ µmin µmax

29 30 31 32 33 34 35 36 37

Figure 5: Distribution of the temperature [◦C] in the eyeball from the linear model.
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Comparison with previous numerical studies
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Validation: measured values over the GCC
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1Efron et al. Current Eye Research. (1989)
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Numerical results: impact of the posture on the pressure and velocity of the AHa

g

x

y
⊙z 15.05

15.2

15.4

15.5

p [mmHg]
0

0.5

1

1.29
·10−4

u [m s−1]

Figure 6: Standing position.

▶ Recirculation of the AH,

▶ Formation of a Krukenberg’s
spindle, in good agreement
with clinical observations and
previous studiesb,c,d

▶ Fluid dynamics is strongly
influenced by the position
of the patient.

aT. Saigre et al. submitted. ()
bWang et al. BioMedical Engineering OnLine. (2016)
cAbdelhafid et al. Recent Devel. in Mathematical,

Statistical and Computational Sciences. (2021)
dMurgoitio-Esandi et al. Translational Vision Science &

Technology. (2023)
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Numerical results: impact of the posture on the pressure and velocity of the AHa
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Figure 6: Prone position.

▶ Recirculation of the AH,
▶ Formation of a Krukenberg’s

spindle, in good agreement
with clinical observations and
previous studiesb,c,d

▶ Fluid dynamics is strongly
influenced by the position
of the patient.

aT. Saigre et al. submitted. ()
bWang et al. BioMedical Engineering OnLine. (2016)
cAbdelhafid et al. Recent Devel. in Mathematical,

Statistical and Computational Sciences. (2021)
dMurgoitio-Esandi et al. Translational Vision Science &

Technology. (2023)
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Figure 6: Supine position.

▶ Recirculation of the AH,
▶ Formation of a Krukenberg’s

spindle, in good agreement
with clinical observations and
previous studiesb,c,d

▶ Fluid dynamics is strongly
influenced by the position
of the patient.

aT. Saigre et al. submitted. ()
bWang et al. BioMedical Engineering OnLine. (2016)
cAbdelhafid et al. Recent Devel. in Mathematical,
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Numerical results: impact of the posture on the wall shear stress
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Figure 7: Wall shear stress distribution on the corneal endothelium for the three postural
orientations.
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Numerical results: impact of the posture on the wall shear stress

▶ Prediction: the WSS distribution is impacted
by the postural orientation and the ambient
temperature.

▶ Clinical target: assess the effect of ocular
surface cooling on endothelial cell sedimentation
in cell injection therapy.a

▶ Optimal treatment strategy: control the
temperature to enhance the diffusion and
sedimentation of the cells during treatment.b

aKinoshita et al. N Engl J Med. (2018)
bT. Saigre et al. ARVO meeting 2025. (2024)
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Incorporate uncertainties

Verification, validation, and
uncertainty quantification (VVUQ)

Digital twins require VVUQ
to be a continual process that
must adapt to changes in the
physical counterpart, digital
twin virtual models, data, and
the prediction/decision task at
hand.1

Sensitivity analysis

In silico model

Finite element

Prohibitive cost in 3D

Model reduction

Reduced
basis

method

1National Academies of Sciences, Engineering, and Medicine Foundational Research Gaps and Future
Directions for Digital Twins. (2024)
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Model Order Reduction
▶ Goal: replicate input-output behavior of the high fidelity model Mfem with a

reduced order model Mrbm,
▶ with a procedure stable and efficient, here the Certified Reduced Basis Method4

Mfem(µ)
(high fidelity)

Parameter
input µ

T fem(µ), s(µ)

Mrbm(µ)

Parameter
input µ

N ≫ N T rbm,N(µ), sN(µ)

4Prud’homme et al. Journal of Fluids Engineering. (2002)
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Time of execution

Implementation in the Feel++ library.

Finite element resolution Reduced model
T fem(µ) T rbm,N(µ), ∆N(µ)

P1 P2 (np=1) P2 (np=12)

Problem size N = 207 845 N = 1 580 932 N = 10
texec 5.534 s 62.432 s 10.76 s 2.88 × 10−4 s

speed-up 11.69 1 5.80 2.17 × 105

Table 1: Times of execution, using mesh M3 for high fidelity simulations.
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Stochastic sensitivity analysis

Distributions (Xi)n
i=1

Input sample Ξ
Output sample

Y = {sN(µ), µ ∈ Ξ}
Reduced model

Openturns Sobol’ indices
5

5Baudin et al. Handbook of Uncertainty Quantification. (2016)
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Stochastic sensitivity analysisa

hbl hamb Tbl Tamb E klens

0
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0.8

1
First order
Total order

Figure 7: Sobol’ indices: temperature at point O.

Temperature at the level of the cornea:
▶ significantly influenced by Tamb, hamb

(external factors) and E , Tbl (subject
specific parameters) −→ need for
measurements/better model for these
contributions,

▶ minimally influenced by klens, hbl −→
can be fixed at baseline value,

▶ high order interactions on Tamb, hamb.

aT. Saigre et al. Int J Numer Methods
Biomed Eng. (2024)

O G
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Stochastic sensitivity analysisa

hbl hamb Tbl Tamb E klens

0

0.2

0.4

0.6

0.8

1
First order
Total order

Figure 7: Sobol’ indices: temperature at point G .

Temperature at the back of the eye:
▶ only influenced by the blood

temperature.
aT. Saigre et al. Int J Numer Methods

Biomed Eng. (2024)

O G
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Conclusion and perspectives

 Heat transport model in the human eye: perform FEM simulations, validation
against experimental data,

 Develop a reduced model with certified error bound,
 Sensitivity analysis: compute Sobol’ indices, highlight the impact of specific

parameters on the outputs of interest.
 Couple heat transfer with AH dynamics: evaluate the impact of postural

orientation and environmental conditions on flow and its properties.
 Clinical application: demonstrate that thermal modulation can improve the results

of endothelial cell therapy.
� Thomas Saigre et al. “Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball”. en. In:

International Journal for Numerical Methods in Biomedical Engineering 40.11 (Sept. 2024), e3864
� Thomas Saigre. “Mathematical modeling, simulation and reduced order modeling of ocular flows and their interactions: Building the Eye’s

Digital Twin”. Theses. Université de Strabourg, Dec. 2024
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Conclusion and perspectives
▶ Enhance the model:

▶ Geometrical model: take into account geometrical parameters,
▶ Fluid dynamics: incorporate the production and drainage of aqueous humor to assess

their impact.
▶ Study laser surgery: integrate radiative transfer module to capture light-tissue

interactions and transient thermal effects (internship and thesis of Pierre-Antoine
Senger)

▶ Steps toward a digital twin of the eye:
▶ incorporate patient-specific data,
▶ enhance predictive modeling and personalized medical applications,
▶ real time connection with the physical entity.

Thank you for your attention!
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▶ enhance predictive modeling and personalized medical applications,
▶ real time connection with the physical entity.

Thank you for your attention!
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Verifications and validations of the coupled heat-fluid model: mesh
convergence
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Verifications and validations of the coupled heat-fluid model

Author Tamb No AH flow AH flow coupled
Prone Supine Standing

Scott (2D) 293.15 306.4 – – –

Ooi et al. (2D) 298 306.45 – – 306.9

Karampatzakis et al.
(3D)

293 306.81 – – 307.06
296 307.33 – – 307.51
298 307.69 – – 307.83

Current model (3D)
293 306.5647 306.56915 306.55899 306.63672
296 307.09845 307.10175 307.09436 307.14651
298 307.45746 307.46008 307.45432 307.49222
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Verifications and validations of the coupled heat-fluid model

Position Reference Maximum velocity Average velocity Pressure
[m s−1] [m s−1] [mmHg]

Supine

Wang et al. 9.44 · 10−4 4.1 · 10−5 13.50 – 13.58
Murgoitio-Esandi et al. 6 · 10−5 n/a n/a

Bhandari et al. n/a 9.88 · 10−6 n/a
Current model 2.59 · 10−5 3.21 · 10−6 15.42 – 15.59

Standing
Wang et al. 9.6 · 10−4 2.5 · 10−4 13.50 – 13.59

Bhandari et al. n/a 5.88 · 10−5 n/a
Current model 2.76 · 10−4 5.23 · 10−5 15.28 – 15.72
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