Towards digital twins for ocular applications - a combined physics-based and data-driven approach

Vincent Chabannes¹, Christophe Prud'homme¹, Thomas Saigre¹, Marcela Szopos²

¹Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS ³Université Paris Cité, CNRS, MAP5, F-75006 Paris, France

> Congrès SMAI 2025 3rd June 2025

Introduction		Computational framework	Conclusion	References
Digital twin	Methodology Motivation			

Digital twins for health: context and challenges

Figure 1: Digital Twins as envisioned for healthcare^a.

Definition of **digital twins** in **precision medicine**²

A *digital twin* is an *in-silico* framework that replicates a biological cell, sub-system, **organ**, or a whole organism, with a transparent **predictive model** of their relevant **causal mechanisms** and **response to interventions**.

^aKatsoulakis, E. et al. npj Digit. Med. (2024)

^bDe Domenico *et al.* npj Digital Medicine. (2025)

Figure 2: Methodology for the development of patient-specific models, adapted from¹.

¹Sala *et al.* International Journal for Numerical Methods in Biomedical Engineering. (2023) Thomas Salgre Towards digital twins for ocular applications SMAI 2025 – 3rd Ju

SMAI 2025 – 3rd June 2024 3 / 21

Aim: build a digital twin of the eye

- State-of-the-art: digital models^a of the eye.
- Toward a digital shadow: data from previous studies and measurements to validate and enhance the models.

^aScott (1988), Ng et al. (2007), Dvoriashyna et al. (2019)...

^bSala et al. Int J Numer Methods Biomed Eng. (2023)

Aim: build a digital twin of the eye

- State-of-the-art: digital models^a of the eye.
- Toward a digital shadow: data from previous studies and measurements to validate and enhance the models.

- ^aScott (1988), Ng et al. (2007), Dvoriashyna et al. (2019)...
- ^bSala et al. Int J Numer Methods Biomed Eng. (2023)

Aim: build a digital twin of the eye

- State-of-the-art: digital models^a of the eye.
- Toward a digital shadow: data from previous studies and measurements to validate and enhance the models.
- Final goal: a digital twin = virtual replica of the eye, in real-time connection with the physical entity.

^aScott (1988), Ng et al. (2007), Dvoriashyna et al. (2019)...

^bSala et al. Int J Numer Methods Biomed Eng. (2023)

Motivation: understand ocular physiology and pathology

- The eye is a complex organ, with a multilayered structure, numerous multiscale and multiphysics phenomena involved.
- Measurements: complex to perform on human subjects^a, scarce data, mostly available on surface^b.
- Present work: focus on heat transfer and aqueous humor flow dynamics.

^aRosenbluth & Fatt. *Exp. Eye Res.* (1977) ^bPurslow & Wolffsohn. *Eye Contact Lens.* (2005)

Motivation: understand ocular **physiology** and **pathology**

- The anterior chamber (AC) is filled with aqueous humor (AH), whose dynamics is crucial for the ocular health^a,
- understand the AH flow dynamics and heat transfer is important for drug distribution^b, and therapeutic interventions (laser treatment, corneal cell sedimentation^c, etc.).

^aDvoriashyna *et al. Ocular Fluid Dynamics*. (2019)

^bBhandari. J Control Release. (2021) ^cKinoshita *et al.* N Engl J Med. (2018)

Figure 3: Production and drainage of AH in the eye.

²Scott. Physics in Medicine and Biology. (1988), Ng & Ooi. Comput Methods Programs Biomed. (2006), Li et al. Int J Numer Method Biomed Eng. (2010)...

³Wang et al. BioMedical Engineering OnLine. (2016), Dvoriashyna et al. Mathematical Models of Aqueous Production, Flow and Drainage. (2019)...

Biophysical model	Computational framework	Conclusion	References
Parameter-dependent model			

Parameter dependent model

Symbol	Name	Dimension	Baseline value	Range
T_{amb}	Ambient temperature	[K]	298	[283.15, 303.15]
$ au_{ m bl}$	Blood temperature	[K]	310	[308.3, 312]
h _{amb}	Ambient air convection coefficient	$[W m^{-2} K^{-1}]$	10 ^a	[8, 100]
h _{bl}	Blood convection coefficient	$[{ m W}{ m m}^{-2}{ m K}^{-1}]$	65 ^b	[50, 110]
h _r	Radiation heat transfer coefficient	$[W m^{-2} K^{-1}]$	6 ^c	_
E	Evaporation rate	$[W m^{-2}]$	40 ^c	[20, 320]
k _{lens}	Lens conductivity	$[W m^{-1} K^{-1}]$	0.4 ^b	[0.21, 0.544]
$k_{ m cornea}$	Cornea conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.58 ^d	-
$k_{ m sclera} = k_{ m iris} = k_{ m lamina} = k_{ m opticNerve}$	Eye envelope components conductivity	$[{\rm W}{\rm m}^{-1}{\rm K}^{-1}]$	1.0042 ^e	-
$k_{aqueousHumor}$	Aqueous humor conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.28 ^d	-
<i>k</i> vitreousHumor	Vitreous humor conductivity	$[W m^{-1} K^{-1}]$	0.603 ^c	-
$k_{ m choroid} = k_{ m retina}$	Vascular beds conductivity	$[W m^{-1} K^{-1}]$	0.52 ^f	-

^a Mapstone (1968), ^b J J W Lagendijk (1982), ^c Scott (1988), ^d Emery et al. (1975), ^e Ng et al. (2007), ^f IT'IS Foundation (2024).

 Introduction
 Biophysical model
 Computational framework
 Incorporate uncertainties
 Conclusion
 References

 General methodology
 Discrete geometry
 Validation and verification
 AH velocity and pressure
 Wall shear stress impact on endothelial cell sedimentation

Methods and computational framework

¹C. Prud'homme, *et al.* Feel++ Release V111. (2024) O github.com/feelpp/feelpp

Thomas Saigre

Discrete geometry: full pipeline and dataset available in GitHub¹

 Performed with Salome meshing library, using NETGEN² meshing algorithm.

Figure 4: Geometry of the eye.

¹V. Chabannes, C. Prud'homme, T. Saigre, L. Sala, M. Szopos, C. Trophime A 3D geometrical model and meshing procedures for the human eyeball, *Zenodo* github.com/feelpp/mesh.eye. (2024) ²J. Schöberl. *Computing and Visualization in Science*. (1997)

Thomas Saigre

Discrete geometry: full pipeline and dataset available in GitHub¹

- Performed with Salome meshing library, using NETGEN² meshing algorithm.
- ► The mesh generated by Salome is quite coarse → refinement performed around the AC and PC.

Figure 4: Original mesh, $4.64 \cdot 10^5$ tetrahedrons.

¹V. Chabannes, C. Prud'homme, T. Saigre, L. Sala, M. Szopos, C. Trophime A 3D geometrical model and meshing procedures for the human eyeball, *Zenodo* github.com/feelpp/mesh.eye. (2024) ²J. Schöberl. *Computing and Visualization in Science*. (1997)

Thomas Saigre

Discrete geometry: full pipeline and dataset available in GitHub¹

- Performed with Salome meshing library, using NETGEN² meshing algorithm.
- ► The mesh generated by Salome is quite coarse → refinement performed around the AC and PC.
- For the verification step: a family of meshes of various refinement levels is generated.

Figure 4: Mesh refined around AC and PC, $9.4 \cdot 10^5$ elements.

¹V. Chabannes, C. Prud'homme, T. Saigre, L. Sala, M. Szopos, C. Trophime A 3D geometrical model and meshing procedures for the human eyeball, *Zenodo* github.com/feelpp/mesh.eye. (2024) ²J. Schöberl. *Computing and Visualization in Science*. (1997)

High Fidelity model

Figure 5: Distribution of the temperature [°C] in the eyeball from the linear model.

Comparison with previous numerical studies

Numerical results: impact of the posture on the pressure and velocity of the AH^a

Biophysical model	Computational	framework Inc	Conclusion	References
		AH velocity and pressure		

Numerical results: impact of the posture on the pressure and velocity of the AH^a

Biophysical model	Computational	l framework Inc	Conclusion	References
		AH velocity and pressure		

Numerical results: impact of the posture on the pressure and velocity of the AH^a

Figure 6: Supine position.

- Recirculation of the AH,
- Formation of a Krukenberg's spindle, in good agreement with clinical observations and previous studies^{b,c,d}
- Fluid dynamics is strongly influenced by the position of the patient.

^aT. Saigre *et al.* submitted. () ^bWang *et al.* BioMedical Engineering OnLine. (2016) ^cAbdelhafid *et al.* Recent Devel. in Mathematical, Statistical and Computational Sciences. (2021) ^dMurgoitio-Esandi *et al.* Translational Vision Science & Technology. (2023)

	Computationa	framework		Conclusion	References
			d pressure Wall shear stress impact o	n endothelial cell sedimer	ntation

Numerical results: impact of the posture on the wall shear stress

Figure 7: Wall shear stress distribution on the corneal endothelium for the three postural orientations.

Numerical results: impact of the posture on the wall shear stress

- Prediction: the WSS distribution is impacted by the postural orientation and the ambient temperature.
- Clinical target: assess the effect of ocular surface cooling on endothelial cell sedimentation in cell injection therapy.^a
- Optimal treatment strategy: control the temperature to enhance the diffusion and sedimentation of the cells during treatment.^b

^aKinoshita *et al.* N Engl J Med. (2018) ^bT. Saigre *et al.* ARVO meeting 2025. (2024)

Verification, validation, and uncertainty quantification (VVUQ)

Digital twins require VVUQ to be a continual process that must adapt to changes in the physical counterpart, digital twin virtual models, data, and the prediction/decision task at hand.¹

¹National Academies of Sciences, Engineering, and Medicine Foundational Research Gaps and Future Directions for Digital Twins. (2024)

Verification, validation, and uncertainty quantification (VVUQ)

Digital twins require VVUQ to be a continual process that must adapt to changes in the physical counterpart, digital twin virtual models, data, and the prediction/decision task at hand.¹

¹National Academies of Sciences, Engineering, and Medicine Foundational Research Gaps and Future Directions for Digital Twins. (2024)

Verification, validation, and uncertainty quantification (VVUQ)

Digital twins require VVUQ to be a continual process that must adapt to changes in the physical counterpart, digital twin virtual models, data, and the prediction/decision task at hand.¹

Prohibitive cost in 3D

¹National Academies of Sciences, Engineering, and Medicine Foundational Research Gaps and Future Directions for Digital Twins. (2024)

Verification, validation, and uncertainty quantification (VVUQ)

Digital twins require VVUQ to be a continual process that must adapt to changes in the physical counterpart, digital twin virtual models, data, and the prediction/decision task at hand.¹

¹National Academies of Sciences, Engineering, and Medicine Foundational Research Gaps and Future Directions for Digital Twins. (2024)

Model Order Reduction

- ► Goal: replicate input-output behavior of the high fidelity model *M*^{fem} with a reduced order model *M*^{rbm},
- ▶ with a procedure stable and efficient, here the Certified Reduced Basis Method⁴

⁴Prud'homme *et al. Journal of Fluids Engineering.* (2002)

Model Order Reduction

- ► Goal: replicate input-output behavior of the high fidelity model *M*^{fem} with a reduced order model *M*^{rbm},
- ▶ with a procedure stable and efficient, here the Certified Reduced Basis Method⁴

⁴Prud'homme *et al. Journal of Fluids Engineering.* (2002)

Thomas Saigre

		Computational framework	Incorporate uncertainties	Conclusion	References
Motivation Model Ord	der Reduction Sensitivity anal	ysis			

Time of execution

Implementation in the Feel++ library.

	Finite	Finite element resolution ${\cal T}^{\sf fem}(\mu)$		
	\mathbb{P}_1	\mathbb{P}_2 (np=1)	\mathbb{P}_2 (np=12)	
Problem size	$\mathcal{N}=207845$	$\mathcal{N}=1$	580 932	N = 10
t_{exec}	5.534 s	62.432 s	10.76 s	$2.88 imes 10^{-4}$ s
speed-up	11.69	1	5.80	$2.17 imes10^{5}$

Table 1: Times of execution, using mesh M3 for high fidelity simulations.

		Computational framework	Incorporate uncertainties	Conclusion	References
Motivation Model Or	der Reduction Sensitivity anal	ysis			

Stochastic sensitivity analysis

⁵Baudin et al. Handbook of Uncertainty Quantification. (2016)

Thomas Saigre

Stochastic sensitivity analysis

⁵Baudin et al. Handbook of Uncertainty Quantification. (2016)

Thomas Saigre

Figure 7: Sobol' indices: temperature at point O.

^aT. Saigre *et al.* Int J Numer Methods Biomed Eng. (2024)

Figure 7: Sobol' indices: temperature at point *G*.

Conclusion and perspectives

- **Heat transport model in the human eye:** perform FEM simulations, validation against experimental data,
- Develop a reduced model with certified error bound,
- **Sensitivity analysis:** compute Sobol' indices, highlight the impact of specific parameters on the outputs of interest.
- **Couple heat transfer with AH dynamics:** evaluate the impact of postural orientation and environmental conditions on flow and its properties.
- **Clinical application:** demonstrate that thermal modulation can improve the results of endothelial cell therapy.
 - Thomas Saigre et al. "Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball". en. In: International Journal for Numerical Methods in Biomedical Engineering 40.11 (Sept. 2024), e3864
 - Thomas Saigre. "Mathematical modeling, simulation and reduced order modeling of ocular flows and their interactions: Building the Eye's Digital Twin". Theses. Université de Strabourg, Dec. 2024

Conclusion and perspectives

- Enhance the model:
 - **Geometrical model:** take into account geometrical parameters,
 - Fluid dynamics: incorporate the production and drainage of aqueous humor to assess their impact.
- Study laser surgery: integrate radiative transfer module to capture light-tissue interactions and transient thermal effects (internship and thesis of Pierre-Antoine Senger)
- Steps toward a **digital twin** of the eye:
 - incorporate patient-specific data,
 - enhance predictive modeling and personalized medical applications,
 - real time connection with the physical entity.

References

Conclusion and perspectives

- Enhance the model:
 - **Geometrical model:** take into account geometrical parameters,
 - Fluid dynamics: incorporate the production and drainage of aqueous humor to assess their impact.
- Study laser surgery: integrate radiative transfer module to capture light-tissue interactions and transient thermal effects (internship and thesis of Pierre-Antoine Senger)
- Steps toward a **digital twin** of the eye:
 - incorporate patient-specific data,
 - enhance predictive modeling and personalized medical applications,
 - real time connection with the physical entity.

Thank you for your attention!

Introduction	Biophysical model	Computational framework	Incorporate uncertainties	Conclusion	References
Bibliograph	ıy				
[Abd+21]	Farah Abdelhat Thermo-Fluid-E Statistical and Springer Procee pp. 489–499.	id et al. "Operator Splitting Dynamics in the Anterior Cha <i>Computational Sciences</i> . Ed edings in Mathematics & Sta	for the Simulation of Aquecomber". en. In: <i>Recent Develo</i> . by D. Marc Kilgour et al. Mistics. Cham: Springer Interr	ous Humor opments in Mather Vol. 343. Series Ti national Publishing	m <i>atical,</i> itle: g, 2021,
[Bau+16]	Michaël Baudir Simulation". In and Houman C	et al. "OpenTURNS: An Ir <i>Handbook of Uncertainty</i> Whadi. Cham: Springer Inter	ndustrial Software for Uncert <i>Quantification</i> . Ed. by Roger rnational Publishing, 2016, p	ainty Quantificatio Ghanem, David H op. 1–38.	on in Higdon,
[BBS20]	Ajay Bhandari, drug transport <i>Release</i> 328 (D	Ankit Bansal, and Niraj Sin in anterior human eye: A co Dec. 2020), pp. 286–303.	ha. "Effect of aging on heat mputational study". en. ln: .	transfer, fluid flow Journal of Control	w and <i>lled</i>
[Bha21]	Ajay Bhandari. Computational	"Ocular Fluid Mechanics an Models". en. In: <i>Pharmaceu</i>	d Drug Delivery: A Review o utical Research 38.12 (Dec. 2	of Mathematical a 2021), pp. 2003–2	and 033.
[Cha+24]	Vincent Chabar Sept. 2024.	nnes et al. A 3D geometrical	model and meshing procedu	res for the human	eyeball.
[Chr+24]	Christophe Pru	d'homme et al. feelpp/feelp	p: Feel++ Release V111 pre	<i>view.9</i> . Mar. 2024	k.

Introduction	Biophysical model	Computational framework	Incorporate uncertainties	Conclusion	References
Bibliograp	hy				
[Com+24]	Committee on Foundational F Mar. 2024.	Foundational Research Gaps Research Gaps and Future Dir	and Future Directions for D rections for Digital Twins. Pl	<mark>igital Twins et al.</mark> ace: Washington,	D.C.
[De +25]	Manlio De Dor from a complex Publishing Gro	menico et al. "Challenges and x systems perspective". In: n _i up UK London, p. 37.	l opportunities for digital twi pj Digital Medicine 8.1 (2025	ns in precision me 5). Publisher: Nat	edicine ure
[Dvo+19]	Mariia Dvoriasi In: <i>Ocular Fluid</i> Title: Modeling International P	nyna et al. "Mathematical Mc d Dynamics. Ed. by Giovanna g and Simulation in Science, ublishing, 2019, pp. 227–263	dels of Aqueous Production, Guidoboni, Alon Harris, and Engineering and Technology.	Flow and Drainag d Riccardo Sacco. . Cham: Springer	ge". en. Series

- [Eme+75] A. F. Emery et al. "Microwave Induced Temperature Rises in Rabbit Eyes in Cataract Research". en. In: Journal of Heat Transfer 97.1 (Feb. 1975), pp. 123–128.
- [EYB89] N. Efron, G. Young, and N. A. Brennan. "Ocular surface temperature". eng. In: Current Eye Research 8.9 (Sept. 1989), pp. 901–906.

[IT124] IT'IS Foundation. Thermal Conductivity. 2024.

Bibliograph	у				
[J J82]	J J W Lagendij rabbit eyes duri 1982), pp. 1301	k. "A mathematical model to ng hyperthermic treatment" –1311.	o calculate temperature dist . In: <i>Physics in Medicine &</i> .	ributions in human <i>Biology</i> 27.11 (Nov	and
[Kat+24]	Evangelia Katso 7.1 (2024). Pub	ulakis et al. "Digital twins fo ilisher: Nature Publishing Gr	r health: a scoping review". oup UK London, p. 77.	In: NPJ Digital Med	dicine
[Kin+18]	Shigeru Kinoshi Keratopathy". e	ta et al. "Injection of Cultur en. In: <i>New England Journal</i>	ed Cells with a ROCK Inhib of Medicine 378.11 (Mar. 2	itor for Bullous 018), pp. 995–1003	3.
[KS10]	Andreas Karam human eye with and Biology 55.	patzakis and Theodoros San consideration of fluid dynan 19 (Oct. 2010), pp. 5653–50	naras. "Numerical model of nics of the aqueous humour" 665.	heat transfer in the . In: <i>Physics in Me</i> d	dicine
[Li+10]	Eric Li et al. "M finite element n <i>Engineering</i> 26.	Modeling and simulation of b nethod (αFEM)". In: <i>Interna</i> 8 (2010), pp. 955–976.	ioheat transfer in the humar ational Journal for Numerica	eye using the 3D and a second se	alpha edical
[Map68]	R. Mapstone. " (Apr. 1968), 23	Measurement of corneal tem 7–IN29.	perature". en. In: Experime	ntal Eye Research 7	′.2

Introduction	Biophysical model	Computational framework	Incorporate uncertainties	Conclusion	References
Bibliograpl	hy				
[Mur+23]	Javier Murgoiti Angle Closure 2023), p. 16.	o-Esandi et al. "A Mechanist on Intraocular Pressure". In:	ic Model of Aqueous Humor Translational Vision Science	Flow to Study Eff & Technology 12.	ects of 1 (Jan.
[NO06]	E.Y.K. Ng and Computer Met	E.H. Ooi. "FEM simulation hods and Programs in Biome	of the eye structure with bio edicine 82.3 (June 2006), pp	oheat analysis". en . 268–276.	i. In:
[NO07]	E.Y.K. Ng and equation". en.	E.H. Ooi. "Ocular surface to In: Computers in Biology an	emperature: A 3D FEM pred d Medicine 37.6 (June 2007)	liction using biohe), pp. 829–835.	at
[ON08]	Ean-Hin Ooi a eye heat transf	nd Eddie Yin-Kwee Ng. "Sim er". en. In: <i>Computers in Bi</i> e	ulation of aqueous humor hy ology and Medicine 38.2 (Fe	ydrodynamics in h b. 2008), pp. 252-	uman -262.
[Pru+02]	C. Prud'homm Equations: Rec (Mar. 2002), p	e et al. "Reliable Real-Time luced-Basis Output Bound M p. 70–80.	Solution of Parametrized Pa lethods". en. In: <i>Journal of I</i>	rtial Differential Fluids Engineering	124.1
[Pru+24]	Christophe Pru	d'homme et al. feelpp/feelp	p: Feel++ Release V111 pre	view.10. July 2024	k.
[PW05]	Christine Pursl & Contact Len	ow and James S. Wolffsohn. Is: Science & Clinical Practic	"Ocular Surface Temperature e 31.3 (May 2005), pp. 117-	e: A Review". en. -123.	In: <i>Eye</i>

Introduction	Biophysical model	Computational framework	Incorporate uncertainties	Conclusion	References
Bibliogra	iphy				

- [RF77] Robert F. Rosenbluth and Irving Fatt. "Temperature measurements in the eye". en. In: Experimental Eye Research 25.4 (Oct. 1977), pp. 325–341.
- [RRK13] R Ramakrishnan, Shalmali Ranaut, and Mona Khurana. "Aqueous Humor Dynamics". en. In: Diagnosis and Management of Glaucoma. Jaypee Brothers Medical Publishers (P) Ltd., 2013, pp. 76–76.
- [Sai+] Thomas Saigre et al. "A coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow in the human eye". In preparation.
- [Sai+24] Thomas Saigre et al. Effect of Cooling of the Ocular Surface on Endothelial Cell Sedimentation in Cell Injection Therapy: Insights from Computational Fluid Dynamics. 2024.
- [Sai24] Thomas Saigre. "Mathematical modeling, simulation and reduced order modeling of ocular flows and their interactions: Building the Eye's Digital Twin". Theses. Université de Strabourg, Dec. 2024.
- [Sal+23] Lorenzo Sala et al. "The ocular mathematical virtual simulator: A validated multiscale model for hemodynamics and biomechanics in the human eye". en. In: International Journal for Numerical Methods in Biomedical Engineering (Nov. 2023), e3791.
- [Sch97] Joachim Schöberl. "NETGEN An advancing front 2D/3D-mesh generator based on abstract rules". In: Computing and Visualization in Science 1.1 (July 1997), pp. 41–52.

	Computational framework	Conclusion	References

Bibliography

[Sco88]	J A Scott. "A finite element model of heat transport in the human eye". In: <i>Physics in Medicine and Biology</i> 33.2 (Feb. 1988), pp. 227–242.				
[SPS24]	Thomas Saigre, Christophe Prud'homme, and Marcela Szopos. "Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball". en. In: <i>International Journal for Numerical Methods in Biomedical Engineering</i> 40.11 (Sept. 2024), e3864.				
D.4					

[Wan+16] Wenjia Wang et al. "Fluid and structure coupling analysis of the interaction between aqueous humor and iris". en. In: *BioMedical Engineering OnLine* 15.S2 (Dec. 2016), p. 133.

Verifications and validations of the coupled heat-fluid model: mesh convergence

Verifications and validations of the coupled heat-fluid model

Author	T _{amb}	No AH flow	AH flow coupled		
Author			Prone	Supine	Standing
Scott (2D)	293.15	306.4	_	_	_
Ooi et al. (2D)	298	306.45	_	_	306.9
Karampatzakic et al	293	306.81	_	_	307.06
	296	307.33	_	_	307.51
(3D)	298	307.69	_	_	307.83
	293	306.5647	306.56915	306.55899	306.63672
Current model (3D)	296	307.09845	307.10175	307.09436	307.14651
	298	307.45746	307.46008	307.45432	307.49222

Verifications and validations of the coupled heat-fluid model

Position	Reference	$\begin{array}{l} Maximum velocity \\ [ms^{-1}] \end{array}$	Average velocity $[{ m ms^{-1}}]$	Pressure [mmHg]
Supine	Wang et al. Murgoitio-Esandi et al. Bhandari et al. Current model	$9.44 \cdot 10^{-4} \\ 6 \cdot 10^{-5} \\ n/a \\ 2.59 \cdot 10^{-5}$	$\begin{array}{c} 4.1\cdot 10^{-5}\\ n/a\\ 9.88\cdot 10^{-6}\\ 3.21\cdot 10^{-6}\end{array}$	13.50 - 13.58 n/a n/a 15.42 - 15.59
Standing	Wang et al. Bhandari et al. Current model	$9.6 \cdot 10^{-4} \\ n/a \\ 2.76 \cdot 10^{-4}$	$\begin{array}{c} 2.5 \cdot 10^{-4} \\ 5.88 \cdot 10^{-5} \\ 5.23 \cdot 10^{-5} \end{array}$	13.50 - 13.59 n/a 15.28 - 15.72