Une équation de Fisher-KPP pour une population structurée en espace et en phénotype *travail avec Luca Rossi*

Nathanaël Boutillon

Directeurs de thèse : Raphaël Forien, Lionel Roques (BioSP), François Hamel (I2M)

BioSP, Inrae, Avignon

I2M, Aix-Marseille Université

SMAI

INSTITUT de MATHÉMATIQUES de MARSEILLE

Fisher-KPP equation

u(t,x): density of individuals $x \in \mathbb{R}$

movements + demography-competition $\partial_t u(t,x) = \Delta u + (r(x)-u)u$

x

x

Heterogeneous periodic environment:

 $u(t,x) \rightarrow$ ► X

Close to extinction ($\sup u(t, \cdot)$ small):

 $\partial_t u(t,x,\theta) \simeq (\Delta+r)u.$

Close to extinction ($\sup u(t, \cdot)$ small):

 $\partial_t u(t,x,\theta) \simeq (\Delta+r)u.$

Krein-Rutman theorem: Unique x-periodic $\varphi(x) > 0$ and $\lambda \in \mathbb{R}$ such that $\varphi(0) = 1$ and

 $\lambda \varphi = (\Delta + r) \varphi.$

Close to extinction ($\sup u(t, \cdot)$ small):

 $\partial_t u(t,x,\theta) \simeq (\Delta+r)u.$

Krein-Rutman theorem: Unique x-periodic $\varphi(x) > 0$ and $\lambda \in \mathbb{R}$ such that $\varphi(0) = 1$ and

$$\lambda \varphi \qquad = \qquad (\Delta + r) \varphi.$$

If $u(0,x) = \varepsilon \varphi(x)$: $\partial_t u \simeq \lambda u \qquad \rightarrow \qquad u(t,x) \simeq e^{\lambda t} u(0,x).$

> $\lambda \leq 0$: extinction $\lambda > 0$: persistence

Cantrell, Cosner 1989; Berestycki, Hamel, Roques 2005

Add a phenotype variable

 $u(t,x) \to u(t,x,\theta), \qquad x \in \mathbb{R}^{N}, \ \theta \in \mathbb{R}^{P}$ movements + mutations + demography-compet. $\partial_{t} u(t,x,\theta) = \Delta_{x} u + \Delta_{\theta} u + (r(x,\theta) - \rho) u$

$$\rho(t,x) = \int_{\mathbb{R}^{p}} u(t,x,\theta) \,\mathrm{d}\theta$$

= total population at time t and position x.

 $r(x,\theta) =$ fitness of phenotype θ at position x.

Add a phenotype variable

 $\begin{array}{ll} u(t,x) \to u(t,x,\theta), & x \in \mathbb{R}^{N}, \ \theta \in \mathbb{R}^{P} \\ & \text{movements} \ + \ \text{mutations} \ + \ \text{demography-compet.} \\ \partial_{t}u(t,x,\theta) \ = \ \Delta_{x}u \ + \ \Delta_{\theta}u \ + \ (r(x,\theta) - \rho)u \end{array}$

$$\rho(t, x) = \int_{\mathbb{R}^{P}} u(t, x, \theta) d\theta$$

= total population at time t and position x.

 $r(x,\theta) =$ fitness of phenotype θ at position x.

Prévost 2004; Champagnat, Méléard 2007 $\Delta_{ heta} u
ightarrow \int M(\sigma) u(t, x, heta - \sigma) d\sigma.$

Add a phenotype variable

 $\begin{array}{ll} u(t,x) \to u(t,x,\theta), & x \in \mathbb{R}^{N}, \ \theta \in \mathbb{R}^{P} \\ & \text{movements} \ + \ \text{mutations} \ + \ \text{demography-compet.} \\ \partial_{t}u(t,x,\theta) \ = \ \Delta_{x}u \ + \ \Delta_{\theta}u \ + \ (r(x,\theta) - \rho)u \end{array}$

$$\rho(t,x) = \int_{\mathbb{R}^{P}} u(t,x,\theta) d\theta$$

= total population at time t and position x.

 $r(x,\theta) =$ fitness of phenotype θ at position x.

Prévost 2004; Champagnat, Méléard 2007 $\Delta_{\theta} u \to \int M(\sigma) u(t, x, \theta - \sigma) d\sigma.$ Goal: Persistence or extinction? \to principal eigenvalue $\liminf_{t \to +\infty} \sup_{x \in \mathbb{R}^N} \rho(t, x) > 0 \quad vs \quad \limsup_{t \to +\infty} \sup_{x \in \mathbb{R}^N} \rho(t, x) = 0.$

B., Rossi, *Reaction–diffusion model for a population structured in phenotype and space: I. Criterion for persistence*, Nonlinearity, 2025.

Generalised principal eigenvalue

 $r \in L^{\infty}_{loc}(\mathbb{R}^N \times \mathbb{R}^P)$ x-periodic, globally bounded above.

Don't require $r(x, \theta) \to -\infty$ as $\|\theta\| \to +\infty!$

Generalised principal eigenvalue

 $r \in L^{\infty}_{loc}(\mathbb{R}^N \times \mathbb{R}^P)$ x-periodic, globally bounded above. Don't require $r(x, \theta) \to -\infty$ as $\|\theta\| \to +\infty!$

Generalised principal eigenvalue [Berestycki, Rossi 2009, 2015]

Let

 $\lambda := \inf \left\{ \lambda' \in \mathbb{R} \ / \ \exists \phi > 0, \, (\Delta_{x,\theta} + r(x,\theta)) \phi \leq \lambda' \phi \right\}.$

Then $\lambda > -\infty$ and there exists $\varphi(x, \theta) > 0$ s.t. $(\Delta_{x, \theta} + r(x, \theta))\varphi = \lambda \varphi$.

 $\lambda < 0$: extinction

 $\lambda > 0$: persistence

Generalised principal eigenvalue

 $r \in L^{\infty}_{loc}(\mathbb{R}^N \times \mathbb{R}^P)$ x-periodic, globally bounded above. Don't require $r(x, \theta) \to -\infty$ as $\|\theta\| \to +\infty!$

Generalised principal eigenvalue [Berestycki, Rossi 2009, 2015]

Let

 $\lambda := \inf \left\{ \lambda' \in \mathbb{R} \ / \ \exists \phi > 0, \, (\Delta_{\mathsf{x},\theta} + r(\mathsf{x},\theta))\phi \leq \lambda'\phi \right\}.$

Then $\lambda > -\infty$ and there exists $\varphi(x, \theta) > 0$ s.t. $(\Delta_{x, \theta} + r(x, \theta))\varphi = \lambda \varphi$.

 $\lambda < 0$: extinction

 $\lambda > 0$: persistence

But:

 \rightarrow for all $\lambda' \geq \lambda$, there is $\varphi_{\lambda'} > 0$ such that $(\Delta_{x,\theta} + r(x,\theta))\varphi_{\lambda'} = \lambda'\varphi_{\lambda'}$ $\rightarrow \varphi$ might go to $+\infty$ as $\|\theta\| \rightarrow +\infty$

Optimisation of the ability of persistence

B., Rossi, *Reaction–diffusion model for a population structured in phenotype and space. II. Optimisation of the ability of persistence,* ongoing.

u =population of pathogens;

living on *fields* C_i (periodic); O_i = optimal phenotype on field *i*

Fisher Geometric model:

$$r(x,\theta) := \begin{cases} \chi(\|\theta - O_1\|) & \text{if } x \in \mathcal{C}_1, \\ \vdots \\ \chi(\|\theta - O_K\|) & \text{if } x \in \mathcal{C}_K, \end{cases}$$

with $\chi \in \mathcal{C}^2(\mathbb{R}_+)$ decreasing and $\inf \chi \leq 0$.

Idea: the closer the optima O_i , the more favourable the environment

Questions

 $\rightarrow\,$ Configuration that maximises the ability of persistence?

Idea: the closer the optima O_i , the more favourable the environment

Questions

- $\rightarrow\,$ Configuration that maximises the ability of persistence?
- $\rightarrow\,$ Configuration that minimises the ability of persistence?

Idea: the closer the optima O_i , the more favourable the environment

Questions

- $\rightarrow\,$ Configuration that maximises the ability of persistence?
- $\rightarrow\,$ Configuration that minimises the ability of persistence?
- $\rightarrow\,$ Given two configurations $\mathit{O}_1,\ldots,\mathit{O}_{\mathit{K}}$ and $\hat{\mathit{O}}_1,\ldots,\hat{\mathit{O}}_{\mathit{K}}$ satisfying

 $\|\hat{O}_i - \hat{O}_j\| \le \|O_i - O_j\|$ for all $i, j = 2, \dots, K$,

is it true that $\lambda[\hat{O}_i] \geq \lambda[O_i]$?

Extra assumptions on χ

There exists $\varphi(x,\theta) > 0$ such that $(\Delta_{x,\theta} + r(x,\theta))\varphi = \lambda\varphi$.

Extra assumptions on χ

There exists $\varphi(x,\theta) > 0$ such that $(\Delta_{x,\theta} + r(x,\theta))\varphi = \lambda\varphi$.

Problem: φ might go to $+\infty$ as $\|\theta\| \to +\infty$

Extra assumptions on χ

There exists $\varphi(x,\theta) > 0$ such that $(\Delta_{x,\theta} + r(x,\theta))\varphi = \lambda\varphi$.

Problem: φ might go to $+\infty$ as $\|\theta\| \to +\infty$

Proposition [B., Rossi 25+] If either of the following holds:

→ inf
$$r = -\infty$$
,
→ $\theta \in \mathbb{R}^{P}$ with $P = 1$ or $P = 2$,
→ $\chi(R) - \inf \chi > A - R^{2}$
where $A > P$ depends on the dimension P and the fields C_{i} ;
THEN $\lambda > \inf r$, which implies:

 φ decays exponentially as $\|\theta\| \to +\infty$

- $\rightarrow\,$ Configuration that maximises the ability of persistence?
- $\rightarrow\,$ Configuration that minimises the ability of persistence?
- \rightarrow Given two configurations O_1, \ldots, O_K and $\hat{O}_1, \ldots, \hat{O}_K$ satisfying

 $\|\hat{O}_i - \hat{O}_j\| \le \|O_i - O_j\|$ for all $i, j = 2, \dots, K$,

is it true that $\lambda[\hat{O}_i] \geq \lambda[O_i]$?

- \rightarrow Configuration that maximises the ability of persistence?
- ightarrow Configuration that minimises the ability of persistence?
- \rightarrow Given two configurations O_1, \ldots, O_K and $\hat{O}_1, \ldots, \hat{O}_K$ satisfying

 $\|\hat{O}_{i} - \hat{O}_{j}\| \leq \|O_{i} - O_{j}\|$ for all $i, j = 2, \dots, K$,

is it true that $\lambda[\hat{O}_i] \geq \lambda[O_i]$?

Theorem [B., Rossi, 25+] Let $\gamma : [0,1] \to \mathbb{R}^P$ be a \mathcal{C}^1 curve, with $\gamma' \neq 0$ on [0,1], such that $s \mapsto ||\gamma(s) - O_i||$ is decreasing for i = 2, ..., K. If $O_1 = \gamma(0)$ and $\hat{O}_1 = \gamma(1)$ then

 $\lambda[\hat{O}_1] > \lambda[O_1].$

- \rightarrow Configuration that maximises the ability of persistence?
- $\rightarrow\,$ Configuration that minimises the ability of persistence?
- \rightarrow Given two configurations O_1, \ldots, O_K and $\hat{O}_1, \ldots, \hat{O}_K$ satisfying

 $\|\hat{O}_i - \hat{O}_j\| \le \|O_i - O_j\|$ for all $i, j = 2, \dots, K$,

is it true that $\lambda[\hat{O}_i] \geq \lambda[O_i]$?

Two configurations: $cross = O_i \in \mathbb{R}^2$

- \rightarrow Configuration that maximises the ability of persistence?
- $\rightarrow\,$ Configuration that minimises the ability of persistence?

Х

 \rightarrow Given two configurations O_1, \ldots, O_K and $\hat{O}_1, \ldots, \hat{O}_K$ satisfying

 $\|\hat{O}_i - \hat{O}_j\| \le \|O_i - O_j\|$ for all $i, j = 2, \dots, K$,

is it true that $\lambda[\hat{O}_i] \geq \lambda[O_i]$?

Two configurations: $cross = O_i \in \mathbb{R}^2$

× × × ×

×

Dilatation

Theorem (B., Rossi 25+)

Let $O_1, \ldots, O_K \in \mathbb{R}^P$ be distinct, satisfying a convexity condition.

 $\rightarrow a \mapsto \lambda[r[aO_1, \dots, aO_K]]$ ($a \ge 0$) is strictly decreasing.

Dilatation

Theorem (B., Rossi 25+)

Let $O_1, \ldots, O_K \in \mathbb{R}^P$ be distinct, satisfying a convexity condition.

 $\rightarrow a \mapsto \lambda[r[aO_1, \dots, aO_K]] \ (a \ge 0) \text{ is strictly decreasing.}$ $\rightarrow \text{ If } \inf r = -\infty \quad \text{ and for all } i, \ C_i + \mathbb{Z}^N \text{ is } C^{1,1},$

$$\lim_{a\to+\infty}\lambda[r[aO_1,\ldots,aO_K]] = \max_{i=1,\ldots,K}\lambda[i].$$

where $\lambda[i]$ is defined as $\lambda[r]$ but with Dirichlet on $\partial(\mathcal{C}_i + \mathbb{Z}^N)$

 \rightarrow Analogous result if inf $r > -\infty$, without regularity assumption, with another definition of $\lambda[i]$.

Open problems

If $\lambda = 0$: do we have extinction?

Open problems

If $\lambda = 0$: do we have extinction?

Spreading properties

- \rightarrow On persistence, is there a spreading speed? Yes if bounded phenotype space
- \rightarrow (non-)Existence/uniqueness of stationary states and pulsating traveling waves?
- $\rightarrow\,$ On persistence, does the solution converge to a pulsating traveling wave?

Open problems

If $\lambda = 0$: do we have extinction?

Spreading properties

- \rightarrow On persistence, is there a spreading speed? Yes if bounded phenotype space
- \rightarrow (non-)Existence/uniqueness of stationary states and pulsating traveling waves?
- $\rightarrow\,$ On persistence, does the solution converge to a pulsating traveling wave?

About the model

- → Given two configurations $O_1, ..., O_K$ and $\hat{O}_1, ..., \hat{O}_K$ satisfying $\|\hat{O}_i \hat{O}_j\| \le \|O_i O_j\|$ for all i, j = 2, ..., K, is it true that $\lambda[\hat{O}_i] \ge \lambda[O_i]$?
- $\rightarrow\,$ What is the effect of adding a new field?
- \rightarrow What is the effect of the shapes of the fields C_i ?

Merci !

Prévost, Applications des équations aux dérivés partielles aux problèmes de dynamique des populations et traitement numérique, Phd thesis, 2004.

Champagnat, Méléard, Invasion and adaptive evolution for individual-based spatially structured populations, 2007.

Cantrel, Cosner, *Diffusive logistic equations with indefinite weights: population models in disrupted environments*, 1989.

Berestycki, Hamel, Roques, Analysis of the periodically fragmented environment model : *I* – Species persistence, 2005.

Berestycki, Rossi, Reaction-diffusion equations for population dynamics with forced speed II-cylindrical-type domains, 2009

Berestycki, Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, 2015

Boutillon, Rossi, Reaction-diffusion model for a population structured in phenotype and space I – Criterion for persistence, 2025

Boutillon, Rossi, *Reaction-diffusion model for a population structured in phenotype and space II – Optimisation of the ability of persistence*, ongoing