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Context

Scaling ODE solvers

Agent-based models for modelling biological processes.

Large scale: ”real-life” size, more rules by agent.

Solving high dimensional and complex systems of ODEs.

General model

Ẋi = Fi(X ) = Hi(Xi ) +
1

N

N∑
j=1

Wij ⊙Gij(Xi ,Xj) i ∈ {1, ..N}, Xi ∈ Rd .
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Mixed precision: a trade-off ?

Use several numerical formats (e.g. FP64, FP32, FP161) inside one
computational tool.

Computational acceleration, less memory needed, better error control.

A mandatory step ?2

1
Zuras, Dan, et al. ”IEEE standard for floating-point arithmetic.” IEEE Std 754.2008 (2008): 1-70.

2
”NVIDIA A100 tensor core GPU architecture.” Whitepaper (2020), V1.0.
”NVIDIA H100 tensor core GPU architecture.” Whitepaper (2023), V1.04.
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Explicit solver for ODE

Discretization and explicit scheme

ODE system: Ẋ = F(t,X), t ∈ [0,T ].

Step: hn = tn+1 − tn > 0, Xn = X(tn).

Stage(s): ks = F(tn + csh,Xn + h
∑s−1

j=1 asjkj), ∀s ∈ {1, ..., p}.

Xn+1 = Xn + h

p∑
s=1

bsks .

Adaptive scheme (ODE23)

Error indicator and step validation modifying the step size (hn).

Combination of 2 embedded Runge-Kutta methods (First Same As
Last property).

All the coefficients (asj , cs , bs ) characterizing a numerical scheme can be grouped in a Butcher Table.
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Mixed-precision at different levels

■ For function evaluation, 3 possibilities can be chosen :

Ẋi = Hi(Xi ) +
1

N

N∑
j=1

Wij ⊙Gij(Xi ,Xj).

■ For each stage (p-stages, 3 in our case), different precision-specification

can be chosen.

Precision

Stage Hi(·) 1
N

∑N
j=1 Wij ⊙Gij(·)

k2 S S S

k3 D D S

k4 D D D
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Benchmarks

Linear coupled oscillators

∀i ∈ {1, ...,N}, {
dxi
dt = yi +

1
N

∑N
j=1(xj − xi )

dyi
dt = −xi

why: Analytic solution

Kuramoto

∀i ∈ {1, ...,N},
dxi
dt

= ωi +
1

N

N∑
j=1

K sin(xj − xi )

why: Non-linear interaction term (sine)
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Normalized Global Error VS System Size (on Kuramoto)
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Normalized Global Error VS Tolerance
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Local Error with linear coupled oscillators
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Conclusion on Error Analysis

1 Benefit with the size.

2 Mixed-precision is more stable against stringent tolerances.

3 Local error better estimated in mixed-precision.

What about performance ?
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Adaptive scheme and first criteria

Let be a given solver precision: P (double, single, mixed).

Number of steps: Nstep,P .

Problem complexity (number of FP operations): Θ.

Fraction of single precision operations: ϱ.

FP operation times: tsingle , tdouble and r =
tsingle
tdouble

.

The solving time for solver P

TP = Nstep,PΘ
(
ϱtsingle + (1− ϱ)tdouble

)
.

Performance parameters

Taking ”double” as reference, we introduce:

β :=
Nstep,double

Nstep,P
, γ := ϱr + (1− ϱ),

Γ :=
TP

Tdouble
=

γ

β
.
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β parameter: number of steps ratio
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Real performance measure (Γ)

Recall on Γ

Γ :=
TP

Tdouble
=

γ

β
.

Performance gain if Γ < 1 ⇔ γ < β.
γ = ϱr + (1− ϱ).

Real performance

An approach with fixed step scheme.
Why? Identical number of function evaluations. a

aIgnoring the cast/convert.
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Γ parameter on Kuramoto
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Conclusion

Take home message

Error in mixed-precision close to double one.

Error benefits from the size.

Performance gain can be optimized (r , ϱ, model).

Future work

More complex problems (heterogeneous Wij , interactions...), real use
cases.

Selective precision heuristic with more than 2 FP formats.

Explore storage performance.
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Floating-point formats

Classic Floating-Point formats are encoded on n bits split into:

Sign bit (blue)

Exponent bits (red)

Significand bits (yellow)
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Floating-point properties

The number of bits and their distribution impact some properties1:

Format Bits (S+E+M) ϵm = 2−M MAXVAL MINVAL

Double 1 + 11 + 52 2−52 ≈ 2.22 10−16 1.80 10308 2.23 10−308

Single 1 + 8 + 23 2−23 ≈ 1.19 10−7 3.40 1038 1.18 10−38

Half 1 + 5 + 10 2−10 ≈ 9.77 10−4 65504 6.10 10−5

bfloat 1 + 8 + 7 2−7 ≈ 7.81 10−3 3.40 1038 1.18 10−38

Range, ϵ machine

Cancellation

Handling exceptions...

1Goldberg, David. ”What every computer scientist should know about floating-point
arithmetic.” ACM computing surveys (CSUR) 23.1 (1991): 5-48.
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Precision-selection

Adaptive scheme

Reference solution: ODE45a with relative tolerance at 10−9.

ODE23 coded in mixed-precision. Double and Single are performed
with the mixed-precision version.

a5(4) Dormand-Prince pair

Mixed1 Mixed2

Stage Hi(·)
∑

Gij(·) Hi(·)
∑

Gij(·)
k2 S S S D D S

k3 S S S D D S

k4 D D S D D S
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Precision-selection

Fixed-step scheme

Reference solution: RK5 (Nyström’s fifth-order method) with 5000
steps.

”Original” RK4 coded in mixed-precision. Double and Single are
performed with the mixed-precision version.

MixedA MixedB

Stage Hi(·)
∑

Gij(·) Hi(·)
∑

Gij(·)
k1 D D S D D D

k2 D D S S S S

k3 D D S S S S

k4 D D S D D D
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Error vs Size
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Γ parameter on Linear coupled oscillators
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Local Error and accumulation (Additional material)

June 3rd 8 / 12



Specificity of the C++ implementation

Store the solution in both formats (FP32 & FP64)

Weighting Matrix supposed low rank

Use OpenMP (parallel for over the agents, SIMD for one agent)
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Relative tolerance

Tolerance and step validation

At each step X
(n)
1 and X

(n)
2 are computed, X

(n−1)
2 is the solution at

previous step.

err :=
∣∣∣∣∣∣(X (n)

1 − X
(n)
2 )./max

(
|X (n)

2 |, |X (n−1)
2 |, Ab

Rel

)∣∣∣∣∣∣
∞
.

’./’ division term by term.
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Normalized final error

Normalized final error

Reference solution, Xref
a.

The normalizedb final error at final time tf :

||Xref (tf )− X (tf )||X =
||Xref (tf )− X (tf )||2√

N
,

a
Computed with Matlab solver ODE45 using the 5(4) Dormand-Prince pair with a 10−9 relative tolerance

b
The normalization by the size of the system enables to facilitate the comparison of the error on each element with respect

to the theoretical error and for different sizes.
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Real local error

Real local error

En
analytic = max

k

(∣∣∣X n+1
k − Xk,ex(X

n, hn)

Xk,ex(X n, hn)

∣∣∣), k ∈ {1, ..., dN}.

where hn = tn+1 − tn, Xex analytic solution at tn with Xn as initial
condition and computed in high precision.
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