Mixed-Precision for solving large biological models SMAI Biennal - 2025

Arsène Marzorati

June 3rd

Directors: Samuel Bernard (MUSICS) & Jonathan Rouzaud-Cornabas (Biotic).

Collaborator: Mouhammad Al-Sayed Ali

AEx Inria:ExODE

Scaling ODE solvers

- Agent-based models for modelling biological processes.
- Large scale: "real-life" size, more rules by agent.
- Solving high dimensional and complex systems of ODEs.

General model

$$\dot{X}_i = \mathrm{F_i}(X) = \mathrm{H_i}(X_i) + rac{1}{N} \sum_{j=1}^N W_{ij} \odot \mathrm{G}_{ij}(X_i, X_j) \ i \in \{1, ..N\}, \ X_i \in \mathbb{R}^d.$$

- Use several numerical formats (*e.g.* FP64, FP32, FP16¹) inside one computational tool.
- Computational acceleration, less memory needed, better error control.
- A mandatory step ?²

¹Zuras, Dan, et al. "IEEE standard for floating-point arithmetic." IEEE Std 754.2008 (2008): 1-70.

²"NVIDIA A100 tensor core GPU architecture." Whitepaper (2020), V1.0.

[&]quot;NVIDIA H100 tensor core GPU architecture." Whitepaper (2023), V1.04.

Explicit solver for ODE

Discretization and explicit scheme

- ODE system: $\dot{X} = F(t, X), t \in [0, T].$
- Step: $h_n = t_{n+1} t_n > 0$, $X_n = X(t_n)$.
- Stage(s): $k_s = F(t_n + c_s h, X_n + h \sum_{j=1}^{s-1} a_{sj} k_j), \forall s \in \{1, ..., p\}.$

$$\mathbf{X}_{n+1} = \mathbf{X}_n + h \sum_{s=1}^p b_s k_s.$$

Adaptive scheme (ODE23)

- Error indicator and step validation modifying the step size (h_n) .
- Combination of 2 **embedded** Runge-Kutta methods (First Same As Last property).

All the coefficients (a_{sj}, c_s, b_s) characterizing a numerical scheme can be grouped in a Butcher Table.

■ For function evaluation, 3 possibilities can be chosen :

$$\dot{X}_i = \mathrm{H_i}(X_i) + rac{1}{N} \sum_{j=1}^N W_{ij} \odot \mathrm{G}_{ij}(X_i, X_j).$$

■ For each stage (*p*-stages, 3 in our case), different *precision-specification* can be chosen.

	Precision			
Stage	$H_i(\cdot)$	$\frac{1}{N}\sum_{j=1}^{N}$	$W_{ij}\odot \mathrm{G}_{ij}(\cdot)$	
<i>k</i> ₂	S	S	S	
k3	D	D	S	
k_4	D	D	D	

Linear coupled oscillators

$$\forall i \in \{1, ..., N\}, \\ \begin{cases} \frac{dx_i}{dt} = y_i + \frac{1}{N} \sum_{j=1}^{N} (x_j - x_i) \\ \frac{dy_i}{dt} = -x_i \end{cases}$$

why: Analytic solution

Kuramoto

 $\forall i \in \{1, ..., N\},$

$$\frac{dx_i}{dt} = \omega_i + \frac{1}{N} \sum_{j=1}^N K \sin(x_j - x_i)$$

why: Non-linear interaction term (sine)

Normalized Global Error VS System Size (on Kuramoto)

Normalized Global Error VS Tolerance

Local Error with linear coupled oscillators

- Benefit with the size.
- Ø Mixed-precision is more stable against stringent tolerances.
- Subscription Local error better estimated in mixed-precision.

What about performance ?

Adaptive scheme and first criteria

Let be a given solver precision: P (double, single, mixed).

- Number of steps: *N*_{step,P}.
- Problem complexity (number of FP operations): Θ .
- Fraction of single precision operations: ϱ .
- FP operation times: t_{single} , t_{double} and $r = \frac{t_{single}}{t_{double}}$.

The solving time for solver P

$$T_P = N_{step,P} \Theta (\varrho t_{single} + (1 - \varrho) t_{double}).$$

Performance parameters

Taking "double" as reference, we introduce:

$$\beta := \frac{N_{step,double}}{N_{step,P}}, \quad \gamma := \varrho r + (1 - \varrho),$$

$$\overline{T} := \frac{T_P}{T_{double}} = \frac{\gamma}{\beta}.$$

β parameter: number of steps ratio

Recall on **Γ**

$$\overline{T} := \frac{T_P}{T_{double}} = \frac{\gamma}{\beta}.$$

Performance gain if $\Gamma < 1 \Leftrightarrow \gamma < \beta$. $\gamma = \rho r + (1 - \rho).$

Real performance

An approach with fixed step scheme. Why? Identical number of function evaluations. ^a

^algnoring the cast/convert.

Γ parameter on Kuramoto

Intel Xeon Gold 5220 AMD EPYC 9754 18 cores/CPU, (X86 64) 128 cores/CPU, (X86 64) 1.4 1.4 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 Solver Solver 0.2 0.2 Single MixedB Single **MixedB** MixedA MixedA MixedC MixedC 0.0 0.0 20000 20000 20000 50000 200000 5000 200 200 500 500 5000

Size

Take home message

- Error in mixed-precision close to double one.
- Error benefits from the size.
- Performance gain can be optimized (r, ρ , model).

Future work

- More complex problems (heterogeneous W_{ij} , interactions...), real use cases.
- Selective precision heuristic with more than 2 FP formats.
- Explore storage performance.

Selected bibliography

- Bogacki P. and Shampine L.F., "A 3 (2) pair of Runge-Kutta formulas." Applied Mathematics Letters 2.4 (1989): 321-325.
- Burnett B., Gottlieb S., Grant Z.J., and Heryudono A., "Performance evaluation of mixed-precision Runge-Kutta methods. IEEE High Performance Extreme Computing Conference (HPEC) (2021).
- Croci M. and de Souza G.R., "Mixed-precision explicit stabilized Runge-Kutta methods for single- and multi-scale differential equations." J. Comput. Phys.(2022)
- 🚇 Higham N.J. and Mary T. "Mixed precision algorithms in numerical linear algebra." Acta Numerica 31 (2022): 347-414.
- Haidar A., Tomov S., Dongarra J. and Higham N.J., "Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers." SC18: Int. Conf. High Perform. Comput. Netw. Storage Anal. IEEE (2018).
- Choquette J. and Wish G., "Nvidia a100 gpu: Performance & innovation for gpu computing." IEEE Hot Chips 32 Symposium (HCS). IEEE Computer Society, (2020).
- Hayford J., Goldman-Wetzler J., Wang E. and Lu L., "Speeding up and reducing memory usage for scientific machine learning via mixed precision", arXiv preprint (2024).

1/12

Classic Floating-Point formats are encoded on n bits split into:

- Sign bit (*blue*)
- Exponent bits (*red*)
- Significand bits (yellow)

The number of bits and their distribution impact some properties¹:

Format	Bits (S+E+M)	$\epsilon_m = 2^{-M}$	MAXVAL	MINVAL
Double	1 + 11 + 52	$2^{-52} \approx 2.22 \ 10^{-16}$	$1.80 \ 10^{308}$	$2.23 \ 10^{-308}$
Single	1 + 8 + 23	$2^{-23}pprox 1.19\;10^{-7}$	3.40 10 ³⁸	$1.18 \ 10^{-38}$
Half	1 + 5 + 10	$2^{-10} pprox 9.77 \ 10^{-4}$	65504	6.10 10 ⁻⁵
bfloat	1 + 8 + 7	$2^{-7} pprox 7.81 \ 10^{-3}$	3.40 10 ³⁸	$1.18 \ 10^{-38}$

- Range, ϵ machine
- Cancellation
- Handling exceptions...

¹Goldberg, David. "What every computer scientist should know about floating-point arithmetic." ACM computing surveys (CSUR) 23.1 (1991): 5-48.

Adaptive scheme

- Reference solution: ODE45^a with relative tolerance at 10⁻⁹.
- *ODE23* coded in mixed-precision. Double and Single are performed with the mixed-precision version.

^a5(4) Dormand-Prince pair

	Mixed1			Mixed2		
Stage	$H_i(\cdot)$	\sum	$G_{ij}(\cdot)$	$H_i(\cdot)$	\sum	$G_{ij}(\cdot)$
k ₂	S	S	S	D	D	S
k3	S	S	S	D	D	S
<i>k</i> 4	D	D	S	D	D	S

Fixed-step scheme

- Reference solution: RK5 (Nyström's fifth-order method) with 5000 steps.
- "Original" RK4 coded in mixed-precision. Double and Single are performed with the mixed-precision version.

	MixedA			MixedB		
Stage	$H_i(\cdot)$	\sum	$G_{ij}(\cdot)$	$H_i(\cdot)$	\sum	$G_{ij}(\cdot)$
k_1	D	D	S	D	D	D
k ₂	D	D	S	S	S	S
k3	D	D	S	S	S	S
<i>k</i> 4	D	D	S	D	D	D

Error vs Size

Γ parameter on Linear coupled oscillators

Local Error and accumulation (Additional material)

June 3rd 8 / 12

- Store the solution in both formats (FP32 & FP64)
- Weighting Matrix supposed low rank
- Use *OpenMP* (parallel for over the agents, SIMD for one agent)

Tolerance and step validation

At each step $X_1^{(n)}$ and $X_2^{(n)}$ are computed, $X_2^{(n-1)}$ is the solution at previous step.

$$err := \left| \left| (X_1^{(n)} - X_2^{(n)}) . / \max \left(|X_2^{(n)}|, |X_2^{(n-1)}|, \frac{Ab}{Rel} \right) \right| \right|_{\infty}$$

'./' division term by term.

Normalized final error

Reference solution, X_{ref}^{a} . The normalized^b final error at final time t_f :

$$||X_{ref}(t_f) - X(t_f)||_X = \frac{||X_{ref}(t_f) - X(t_f)||_2}{\sqrt{N}},$$

 a Computed with Matlab solver 0DE45 using the 5(4) Dormand-Prince pair with a 10 $^{-9}$ relative tolerance

 b The normalization by the size of the system enables to facilitate the comparison of the error on each element with respect to the theoretical error and for different sizes.

Real local error

$$E_{analytic}^n = \max_k \left(\left| \frac{X_k^{n+1} - X_{k,ex}(X^n, h_n)}{X_{k,ex}(X^n, h_n)} \right| \right), k \in \{1, ..., dN\}.$$

where $h_n = t_{n+1} - t_n$, X_{ex} analytic solution at t_n with X_n as initial condition and computed in high precision.