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Introduction
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Introduction

Continuous-time optimal control with chance constraints to handle
uncertainty

Chance constraints guarantee a threshold of performance 𝛼 of
satisfaction

We can derive a deterministic equivalent formulation in SOCP
(second-order conic programming) [Prékopa, 2013]
Comparison:

Solving the optimal control problem as a nonlinear optimisation
problem with integral cost function [Valli et al., 2024]
Solving an ODE system as a two-point boundary value problem

Application to reference trajectory planning generation for
autonomous vehicles
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Writing the optimal control
problem
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Problem setup

Let n,m ∈ N be dimensions of state and control vectors respectively
z (t) ∈ Rn, u(t) ∈ Rm. Let tf ∈ R, tf ≥ 0 the final time.

Integrand l : Rn × Rm ↦−→ R, Integral cost function J : Rm → R,
Controls u = (u(t))t∈[0,tf ] and states z = (z (t))t∈[0,tf ]

Cost function

J(u) =
∫ tf

0
l(z (t), u(t)) dt (1)
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Optimisation problem

Let 𝛼 ∈ [0, 1]
Control-state equation: f : Rn × Rm → Rn,

Random vector a ∼ N(𝜇, Σ), with 𝜇 ∈ Rn the mean vector and
Σ ∈ Rn×n the covariance matrix, b ∈ R

Optimisation problem with chance constraint

min
u

J(u) (2)

s.t.
dz (t)

dt
= f (z (t), u(t))

P(aT z (t) ≤ b) ≥ 𝛼
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Chance constraint reformulation

Thanks to [Prékopa, 2013], the chance constraint is equivalent to a
second-order conic programming (SOCP) constraint

Chance constraint

P(aT z (t) ≤ b) ≥ 𝛼 ⇐⇒ 𝜇T z (t) + F−1(𝛼)∥Σ1/2z (t)∥2 ≤ b (3)

with
F (·) the cumulative distribution function (CDF) of the standard normal
distribution N(0, 1).
| | · | | the Euclidean norm
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Writing the Hamiltonian
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Path constrained optimisation problems for nonlinear
dynamic systems

From [Bryson, 2018], chapter 3.11, let

Constraint on function of the state variable

S (z (t)) := 𝜇T z (t) + F−1(𝛼)z (t)TΣz (t) − b (4)

Inequality constraint on function of the state variables only S (z (t)) ≤ 0

Let

𝜆(t) ∈ Rn the costates associated to z (t)
𝜂(t) ∈ Rn, 𝜂(t) ≥ 0 the time-dependent Lagrangian multipliers
associated to S (z (t))

Valli, Lisser, Tebbani (L2S) Pontryagin with chance constraints June 3, 2025



11/40

Time-dependent Lagrangian multipliers

Time-dependent Lagrangian multipliers 𝜂(t) are defined such as

Time-dependent Lagrangian multipliers{
𝜂(t) = 0 if S (z (t)) < 0

𝜂(t) > 0 if S (z (t)) = 0
(5)

Remark
Depending on the problem studied, discontinuities may appear at
constraint saturation, leading to singular arcs [Bryson, 2018]
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q-th order state variable inequality constraint

To control the system at constraint saturation S (z (t)) = 0, we need to
find q ∈ N as the q − th time derivative of the constraint S (z (t))
depends explicitly on the command u(t).
The order q is fixed such as it exists g : Rn × Rm ↦−→ Rn verifying the
following condition:

q-th order state variable inequality constraint

d (q)S (z (t))
dt (q)

= g(z (t), u(t)) (6)
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Tangency conditions

The following condition must be checked for the command u(t) to be
optimal

Tangency conditions

d (q)S (z (t))
dt (q)

= 0 if S (z (t)) = 0 (7)
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Hamiltonian formulation

The Hamiltonian writes as

Hamiltonian

H(z (t), u(t), 𝜆(t), 𝜂(t)) = l(z (t), u(t)) + 𝜆T (t) · f (z (t), u(t)) (8)

+ 𝜂(t)T · dqS (z (t))
dtq
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Problem formulation
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Euler-Lagrange equations

The Euler-Lagrange equations give ordinary differential equations to
determine the costates 𝜆(t)

Euler-Lagrange equations for costates 𝜆(t)

d𝜆(t)
dt

= −𝜕H(z (t), u(t), 𝜆(t), 𝜂(t))
𝜕z (t) (9)
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Transversality conditions and optimal command

In our problem, there is no constraint at final time, therefore

𝜆(tf ) = 0 (10)

The optimal command u∗(t) is obtained by

Optimal command u∗(t)

u∗(t) = argminumin≤u(t )≤umax
H

(
z (t), u(t), 𝜆(t), 𝜂(t)

)
(11)

It verifies the condition

𝜕H(z (t), u∗(t), 𝜆(t), 𝜂(t))
𝜕u(t) = 0 (12)
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Two-Point Boundary Value Problem (TPBVP)

Finally, we obtain the two-point boundary value problem such as

TPBVP schema


dz (t)

dt
= f (z (t), u(t))

d𝜆(t)
dt

= −𝜕H(z (t), u(t), 𝜆(t), 𝜂(t))
𝜕z (t)

z (0)

𝜆(0)?

z (tf )

𝜆(tf ) = 0

(13)
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𝜆∗(0) and shooting method

Therefore, the control is determined by optimal initial values

Optimal initial values 𝜆∗(0)

𝜆∗(0) = argmin ∥𝜆(tf )∥ (14)

Classical approach to solve this problem is to use the shooting
method [Morrison et al., 1962]

In our application, we use Levenberg-Marquardt algorithm
[Gavin, 2019] with an estimation 𝜆(0) as starting point, obtained by
reversing the system (13) using results of our previous work
[Valli et al., 2024] with costates 𝜆(tf ) = 0. We use GEKKO
optimisation solver [Beal et al., 2018].
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Application to trajectory
planning problem

Valli, Lisser, Tebbani (L2S) Pontryagin with chance constraints June 3, 2025



21/40

Trajectory planning I

We represent the vehicle controlled (the ego vehicle) by its Cartesian
coordinates.

Command u(t) and state z (t)

u(t) =
(

jt
𝜔t

)
(15) z (t) =

©«
xt

yt

𝜃t

vt

at

ª®®®®®¬
(16)

jt is the jerk, 𝜔t the angular velocity

(xt , yt ) the Cartesian coordinates, 𝜃t the heading angle of the ego
vehicle, vt the linear speed and at the linear acceleration
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Trajectory planning II

The control-state relationship is given by :

Control-state equation

dz (t)
dt

= f (z (t), u(t)) =
©«
vt cos(𝜃t )
vt sin(𝜃t )

𝜔t

at

jt

ª®®®®®¬
(17)
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Objective function

The waypoints (xwp
t , ywp

t , 𝜃
wp
t )t≥0 corresponds to the centre lane of

the road, vr the recommended linear speed

Objective function

∫ tf

0
w′

x (t)
(

xt

xwp
t

− 1

)2

+ w′
y (t)

(
yt

ywp
t

− 1

)2

+ w′
h (t)

(
𝜃t

𝜃
wp
t

− 1

)2

(18)

+ w′
v

(
vt

vr
− 1

)2

+ w′
a · a2

t + w′
𝜔 · 𝜔2

t + w′
j · j2t

+ wp · P (x tgt
t , y tgt

t , xt , yt )dt
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Adaptive Cruise Control (ACC) feature

The ACC feature [Liu et al., 2017] is modelled by

Adaptive Cruise Control

P (x tgt
t , y tgt

t , xt , yt ) = (19)

e−
( (xtgt

t −xt )2+(y
tgt
t −yt )2

2

) (
1 + erf

( sign(x tgt
t − xt )

√︃
(x tgt

t − xt )2 + (y tgt
t − yt )2

√
2

))
With

∀x ∈ R erf (x) = 2
√
𝜋

∫ x

0
e−t2

dt (20)
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Chance constraints on target distance

Uncertainty on target vehicle position:

x tgt
t ∼ N(𝜇xt , 𝜎xt ), y

tgt
t ∼ N(𝜇yt , 𝜎yt ) (21)

Equivalent constraints
From [Valli et al., 2024]

P( |xt − x tgt
t + yt − y tgt

t | ≥ dmin) ≥ 𝛼 ⇐⇒ (22)

xt + yt ≤ 𝜇xt + 𝜇yt + dmin +
√︃
𝜎2

xt
+ 𝜎2

yt
F−1

N (𝛼/2) (23)

xt + yt ≥ 𝜇xt + 𝜇yt − dmin +
√︃
𝜎2

xt
+ 𝜎2

yt
F−1

N (1 − 𝛼/2) (24)
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Experiments setup

Parameter Function Value
vr Reference linear speed 12 m.s−1

dmin Minimum distance between vehicles 5 m
vmax Maximum linear speed 40 m.s−1

𝜔max Maximum angular speed 𝜋
6 s−1

amax Maximum acceleration 2 m.s−2

jmax Maximum jerk 0.6 m.s−3

Table: Parameters’ values for urban driving scenarios during the simulation.
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Resolution steps

Algorithm Solving the continuous-time optimal control problem
1: Initialize z (0) initial state, tf final time
2: Solve the optimal control problem using GEKKO solver starting from

initial state z (0)
3: return

(
zGEKKO (t), uGEKKO (t)

)
⟦0,tf⟧

4: Reverse integration of the TPBVP starting from
(
zGEKKO (tf ), 𝜆(tf ) = 0

)
5: return

(
z̃ (0), 𝜆(0)

)
6: Optimise the initial costates by Levenberg–Marquardt algorithm ap-

plied on the TPBVP starting from
(
z (0), 𝜆(0)

)
7: return 𝜆∗(0)
8: Forward integration of the TPBVP
9: return

(
zPontryagin (t), uPontryagin (t)

)
⟦0,tf⟧
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Trajectory comparison
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Optimal Commands
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Constraint violations

Quantity dmin − |x tgt
t − xt + y tgt

t − yt |
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Conclusion

Pontryagin solver achieves smoother command and tighter constraint
handling than direct methods used by GEKKO solver

Better minimise the cost function, but finding initial conditions can be
complex

Further perspectives: study the impact of approximations on the
method (derivative of sign(·), choice of ODE solver, choice of
optimisation technique); extend to higher time horizons; apply the
approach to other optimal control problems
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Thank you !
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Annex I : Transversality conditions

Transversality conditions on the costates 𝜆(tf ) depend on the
constraints at final time tf .

Let Ψ : Rn ↦−→ Rn represents the equality constraints on the final state
such as Ψ(z (tf )) = 0 and 𝜈 ∈ Rn the Lagrange multipliers associated.

Let Φ(tf ) ∈ R the terminal cost function such that

J(u) =
∫ tf

0
l (z (t), u(t)) dt +Φ(tf ) (25)

Transversality conditions

𝜆(tf ) =
𝜕

𝜕z (tf )
(Φ(tf ) + 𝜈TΨ(tf )) (26)
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Annex II : Numerical simulation I

Time horizon: T = 4 s, time step Δt = 0.04 s

Driving along the road, straight line (∀t ∈ R+ yt = 0, 𝜃t = 0)

GEKKO Solving

z (0) =
©«

0
0
0

13.038
0

ª®®®®®¬
(27) zGEKKO (tf ) =

©«
50.81

0
0

12.61
0.01

ª®®®®®¬
(28)
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Annex II : Numerical simulation II

Reverse integration

z̃ (0) =
©«
−1.662

0
0

14.840
−1.631

ª®®®®®¬
(29) 𝜆(0) =

©«
−4.546

0
0

−8.242
−16.277

ª®®®®®¬
(30)
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Annex II : Numerical simulation III

Levenberg–Marquardt optimisation

𝜆∗(0) =
©«

0.572
−9.194 ∗ 10−17

1.460 ∗ 10−16

0.959
0.533

ª®®®®®¬
(31)
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Annex II : Optimal cost

Numerical integration using Simpson’s method

Optimal cost for GEKKO solver

J∗GEKKO :

∫ tf

0
l(zGEKKO (t), uGEKKO (t))dt = 8.90 (32)

Optimal cost for Pontryagin solver

J∗Pontryagin :

∫ tf

0
l(zPontryagin (t), uPontryagin (t))dt = 4.91 (33)
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